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Introduction

The following notes represent an attempt to bring together into a coherent whole argu-
ments from electrodynamics and quantum mechanics that may be useful to an understand-
ing of response properties of a molecule in the presence of two magnetic perturbations,
namely a spatially uniform, time-independent external field and an intramolecular perma-
nent dipole moment placed on a nucleus.

The first section is aimed at showing how far one can go using the tools of classical
physics, its contradictions and failure to explain paramagnetism, and the need for quantum
mechanical theories, which only can be used to rationalize magnetic susceptibilities and
nuclear magnetic shieldings in molecules.

Section II deals with the definition of quantum mechanical current density, induced by
magnetic perturbations within the electron cloud, and its properties. The hydrodynami-
cal foundation of quantum mechanics is reviewed, introducing the concept of Madelung-
London-Landau local mean velocity and deducing its equation of motion, formally identical
to Newton equation. A “vorticity condition” for the quantum mechanical current density
is obtained as a consequence of quantization constraint.

1L.A. Montero, L.A. Dı́az and R. Bader (eds.), Introduction to Advanced Topics of Computational
Chemistry, 105 - 136, 2003, c©2003 Editorial de la Universidad de La Habana, Havana.
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The sum rules for gauge invariance of theoretical magnetic properties, and their con-
nection with relationships for charge and current conservation are examined in the light
of the fundamental Nöther theorem.

Special methods for computing magnetic properties within the framework of a contin-
uous transformation of the origin of the current density are presented in Section III. The
invariance to a gauge translation of magnetic properties calculated via such procedures
within the algebraic approximation is discussed.

The level of discussion, both as regards mathematics and physics, is elementary to
make the text readily accessible to undergraduate students.

5.1 CLASSICAL CURRENT DENSITY INDUCED BY A
STATIC MAGNETIC FIELD

5.1.1 The Larmor precession

Let us consider the finite motion of a system of n classical (spinless) particles with mass
mi and charge qi. With respect to an inertial frame K, that is, the space set of axes in
the laboratory, the particles have position coordinates ri, velocities vi and linear momenta
pi = mivi. The angular momentum and the magnetic dipole moment of the system of
particles with respect to the origin are respectively

L =
n∑

i=1

li, li = ri × pi, (1.1)

m =
1
2c

n∑
i=1

qi

mi
li. (1.2)

When the particles have a uniform q
m ratio, the magnetogyric ratio is defined [1]

Γ =
q

2mc
, (1.3)

so that
m = ΓL. (1.4)

Vectors L and m are origin–independent if the total linear momentum vanishes,

P =
n∑
i

pi = 0,

that is, if the center of mass of the particle distribution is at rest in K.
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We will be interested in the stationary motion of the particle distribution. In this case
it is convenient to introduce the time–average of a dynamical variable f ,

f = lim
τ→∞

1
τ

∫ τ

0
f(t)dt.

In the presence of a time–independent spatially uniform magnetic field with induction B
the energy of the average magnetic dipole is

W = −m ·B. (1.5)

The magnetic field also exerts an average torque on the magnetic dipole,

K = m×B, (1.6)

so that, from eqs. (1.3), (1.4) and (1.6), the equation of motion for the total average
angular momentum is

dL
dt

= K = −ΓB× L. (I.7)

For any vector V of constant magnitude, rotating counterclockwise in space about an
axis n fixed in K, with angular velocity Ω, the time rate of change is

dV
dt

= Ω×V. (1.8)

Hence, owing to eqs. (1.7) and (1.8), the magnetic field induces a uniform precession of L
(and m) about the direction of B with angular velocity

ΩL = −ΓB. (1.9)

The modulus ΩL is known as Larmor frequency [1]. For electrons q = −e, Γ is negative,
and the Larmor precession is counterclockwise.

5.1.2 Larmor’s theorem

Let us consider a classical (spinless) particle of mass m, charge q and position rs = rs(t),
moving with velocity vs with respect to Ks, the inertial system fixed in the laboratory, in
the central electric field E of another particle Q in the origin of Ks, and in the presence
of the spatially uniform time–independent magnetic field B. For an observer in Ks, the
Lorentz force acting on the particle is

Fs = qE +
q

c
vs ×B, (1.10)

and the equation of motion is

Fs = mas = m

(
dvs

dt

)
s
. (1.11)
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Let us introduce a coordinate system Kr rotating with the Larmor angular velocity

ΩL = − q

2mc
B.

We assume Ks and Kr axes as instantaneously coincident at time t, so that

rs = rr ≡ r.

The time rate of change of any vector, is given by the operator equation [1,2]

(
d

dt

)
s

=
(

d

dt

)
r
+ ΩL×, (1.12)

thus, for a given vector As defined in Ks,(
dAs

dt

)
s

=
(

dAs

dt

)
r
+ ΩL ×As. (1.12′)

For As ≡ r, eq. (1.12′) relates the velocity of the particle in the stationary system to that
in the rotating system,

vs = vr + ΩL × r, (1.13)

and, for As ≡ vs, the analogous equation for the accelerations in Ks and Kr is

as = ar + 2ΩL × vr + ΩL × (ΩL × r). (1.14)

¿From this result we find the effective force Fr acting in the rotating system; it contains
Coriolis and centrifugal terms [3]

Fr = Fs + 2mvr × ΩL + m(ΩL × r)× ΩL. (1.15)

¿From eqs.(1.9)–(1.11) and (1.13)–(1.15), the equation of motion in the rotating system
has the simple form

Fr = mar = qE + mΩL × (ΩL × r), (1.16)

from which the term linear in B has disappeared. If the last term is neglected, eq. (1.16)
becomes the equation of motion of the particle in a central electric field, referred to the
rotating system. The effective magnetic field Br, acting on the particle in Kr, is identically
vanishing.

This result can be generalized to discuss the precession of the angular momentum of a
single particle with respect to a system rotating with angular velocity Ω, in the presence
of the magnetic field B, using the following argument [2]. The instantaneous angular
momentum of the particle is [3]

ls = lr ≡ l,
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but, from (1.12), and using the equation of motion for l analogous to (1.7), one has(
dl
dt

)
r

=
(

dl
dt

)
s
− Ω× l = l× (Ω− ΩL) = Γl×Br, (1.17)

where

Br = B +
1
Γ

Ω (1.18)

is the effective magnetic field acting upon the particle in a coordinate system rotating with
angular velocity Ω. When Ω = ΩL, Br = 0, and l is stationary in Kr.

These findings constitute the Larmor theorem [4]: for a fixed observer, to first order
in B, the effect of the magnetic field on a charge q is that of inducing a precession with
angular velocity ΩL = −ΓB, superimposing to its normal motion. Thus a fixed system Ks

in an external magnetic field B is equivalent to a reference system Kr without magnetic
field, rotating with angular velocity

Ω =
q

2mc
B = −ΩL,

so that, also for an observer in Kr, the charge q precesses with angular velocity ΩL. One
can alternatively say that in a coordinate frame Kr, rotating with angular velocity Ω,
there is an apparent magnetic field

B =
2mc

q
Ω

acting on charge q.

On the one hand, the (adiabatic) switching on of the magnetic field B can be thought of
as an active transformation, leaving the coordinate system Ks fixed, and inducing a rigid
rotation of the physical space, i.e., a precession of charges with angular velocity ΩL = −ΓB.
On the other hand, the choice of the alternative coordinate system Kr, rotating with
angular velocity ΓB = −ΩL, amounts to a backward passive transformation, leaving
the charge distribution fixed. Although conceptually different, these transformations are
equivalent in practice.

We emphasize that neglecting the centrifugal contribution in eq. (1.16), a term to
second order in B, does not lead to any major problem. Let us consider, for instance, the
Larmor precession of an electron in the first Bohr orbit of hydrogen atom. Indicating with
a0 the Bohr radius and with e the proton charge, the radial electric force is

Fr = − e2

a2
0

,

that is, ≈ 8.24×10−3 dyne. In a magnetic field of 105 Gauss, i.e., 10 Tesla, using tabulated
values [5], the linear term in B is ≈ 3.51× 10−7 dyne, and the centrifugal term quadratic
in B, ≈ 3.73× 10−12 dyne, can be safely neglected.
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5.1.3 Classical current density, magnetic susceptibility and nuclear mag-
netic shielding

The statements we have made so far for discrete charges qi can be extended to a continuous
distribution of charge density ρ(r) = qγ(r) via the formal replacement

n∑
i=1

qi →
∫

dV ρ(r).

For a point charge at r0, ρ(r) ≡ qδ(r− r0). For instance, the expression for the magnetic
dipole becomes

m =
1
2c

∫
dV ρ(r)r× v. (1.2′)

Let us consider a system of charges confined within the volume V . S is the closed
surface enclosing the integration volume V , and the vector dS = ndS is directed along the
external line perpendicular to the surface S. The time rate of change of total charge in
the volume V is [4]

∂

∂t

∫
V

ρ(r)dV = −
∫

S
ρ(r)v · dS = −

∫
V
∇ · J(r)dV (1.19)

where ρv · dS is the charge crossing the surface element dS with velocity v. The last
identity arises from the Gauss divergence theorem, where we have used

J = ρv, (1.20)

Eq. (1.19) is called continuity equation in integral form. As it holds for any V , the
differential condition

∇ · J +
∂

∂t
ρ = 0 (1.21)

is to be satisfied. In terms of γ = 1
qρ and j = 1

qJ,

∇ · j +
∂

∂t
γ = 0. (1.22)

Some formulae can be rewritten using the expression for the current density, for in-
stance,

m =
1
2c

∫
dV r× J (1.2′′)

is the permanent (unperturbed) magnetic moment of a charge distribution, compare for
eq. (1.2′). Its energy in the magnetic field is

W = −m ·B = −1
c

∫
dV A · J. (1.5′)

For a charge distribution precessing in a central electric field E, e.g., in the case of
a diamagnetic atom, it is expedient to define a Larmor current density JL(r). From the
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general formula (1.20) and eq. (1.13), the contribution provided by the Larmor precession
is

JL = ρΩL × r = − q

mc
ρA. (1.23)

In eqs. (1.5’) and (1.23)

A =
1
2
B× r (1.24)

is the vector potential with respect to the origin. Eq. (1.23) has been obtained via the
formal replacement

v → v′ = v − q

mc
A, (1.25)

i.e., the contribution to the radial velocity of an element of charge due to the Larmor
precession is

vL =
JL

ρ
= − q

mc
A, (1.26)

satisfying the general equation

ΩL =
1
2
∇× vL. (1.27)

For electron densities, JL is clockwise around the direction of B. The trajectories lie in
planes perpendicular to the inducing magnetic field.

The magnetic field induced via a feedback effect at point r0 by the perturbed charge
distribution is given by the Biot–Savart law,

BL(r0) =
1
c

∫ r− r0

|r− r0|3
× JL(r)dV = −σL(r0) ·B, (1.28)

where r is the distance of the volume element dV from the origin, so that the effective
field acting on the point r0 is B + BL(r0). The tensor

σL(r0) =
q2

2mc2

∫
dV γ(r)

[
r · (r− r0)
|r− r0|3

1− r
(r− r0)
|r− r0|3

]
, (1.29)

describes the magnetic shielding at point r0, arising from the Larmor precession.

The first–order magnetic moment due to the Larmor precession,

mL =
1
2c

∫
dV r× JL = χL ·B, (1.30)

and its second–order interaction energy with the magnetic field

WL = − 1
2c

∫
dV A · JL = −1

2
mL ·B = −1

2
B · χL ·B, (1.31)

are written in terms of

χL = − q2

4mc2

∫
dV γ(r)(r21− rr), (1.32)

the magnetic susceptibility tensor of the charge distribution.
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In the case of n electrons precessing around the nucleus of a diamagnetic atom, by
taking the average over the directions of r within the integral in eq. (1.28), the average
magnetic field induced on the nucleus at the origin of the coordinate system is

BL(0) = −σAv
L (0)B =

e

3mc2
φe(0)B, (1.33)

where

σAv
L (0) =

1
3
TrσL(0) =

e2

3mc2

n∑
i=1

(
1
ri

)Av

(1.34)

is the average magnetic shielding at the nucleus,

φe(0) = −e

∫
dV γ(r)

1
r

(1.35)

is the (scalar) electric potential at the nucleus due to the electron cloud, and the average
inverse distance of electrons from the origin is∫

dV γ(r)
1
r

=
n∑

i=1

(
1
ri

)Av

.

Taking the average over r in (1.2′′), the average magnetic dipole induced by the field is
mL = χAv

L B, where

χAv
L =

1
3
TrχL = − e2

6mc2

n∑
i=1

(
r2
i

)Av
(1.36)

is the average magnetic susceptibility and∫
dV γ(r)r2 ≡

n∑
i=1

(
r2
i

)Av

is the average square distance of electrons from the origin.

Eq. (1.36) is known as Langevin formula (in the correct form given by Pauli [6]). χAv
L

is called diamagnetic susceptibility, as the induced magnetic moment, according to Lentz’s
law, is antiparallel to the magnetic field.

It is expedient to introduce the perturbation expansion for the current density via the
Taylor series

Jα(r) = J (0)
α (r) + J Bβ

α (r)Bβ + . . . (1.37)

The Larmor current density can be therefore written in terms of a first–order current
density tensor of rank 2

JLα = J Bβ

Lα Bβ . (1.38)

The magnetic susceptibility and the nuclear magnetic shielding at nucleus I, with position
RI , can be rewritten (sum over repeated indices), compare with eqs. (1.32) and (1.29),

χLαδ =
1
2c

εαβγ

∫
dV rβJ Bδ

Lγ (r), (1.39)

σI
Lαδ = −1

c
εαβγ

∫
dV

rβ −RIβ

|r−RI |3
J Bδ

Lγ (r). (1.40)
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5.1.4 Charge conservation and gauge invariance

It is well known that the origin of the vector potential A can be chosen ad libitum [4], as
the magnetic field B = ∇×A is invariant under a gauge transformation

A → A′ = A +∇f, (1.41)

where f = f(r) is an arbitrary function of coordinates. This transformation, for the
particular choice

f = −(1/2)(B× d) · r,
amounts to a shift d of origin of the coordinate frame. Accordingly, in order for eqs. (1.23)–
(1.27) to make sense, the origin of the coordinate system must be chosen on the central
charge Q. Under the change of gauge (1.41) the first–order energy (1.5′) must stay the
same, which means that ∫

dV J · ∇f = 0. (1.42)

In fact ∫
dV J · ∇f =

∫
dV ∇ · (fJ)−

∫
dV f∇ · J, (1.43)

and, owing to the divergence theorem, the first volume integral on the r.h.s. is converted
into a surface integral, vanishing due to the boundary conditions ρ(r), J(r) → 0 for
r → ∞. Thus eqs. (1.42) and (1.43) are satisfied provided that the continuity equation
for the stationary state,

∇ · J = 0, (1.44)

is fulfilled (compare eq. (1.21), assuming that ρ does not depend explicitly on time). Due
to the arbitrary nature of f , one has in particular (for f = x, y, z)∫

dV J = 0, (1.45)

which, compare eq. (1.19), can be called the integral condition for charge conservation in
the presence of static magnetic field.

Therefore invariance of the interaction energy in a translation of gauge of vector po-
tential implies conservation of charge according to eq. (1.44) and vice versa. This result
can be viewed within the general framework of the Nöther theorem [1], which asserts that
every continuous symmetry characterizing a given mechanical system (in the present case
invariance of the interaction energy to origin shift) implies a corresponding conservation
constraint for that system. It is easily checked that equations (1.42) and (1.43) are obeyed
by the Larmor current density. In particular, from the invariance of the second–order
energy (1.31), one has immediately∫

dV JL · ∇f = 0.

The continuity equation in differential form ∇ · JL = 0 is automatically fulfilled, compare
for eq. (1.23), as r is always parallel to ∇ρ(r) in a central field. Similarly

∫
dV JL = 0

is satisfied by symmetry, as the average electric dipole of a spherical charge distribution
vanishes.
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5.1.5 Electronic current density induced by nuclear magnetic dipoles
and nuclear magnetic coupling

Let us consider a molecule. The interaction energy due to Larmor precession between
the external magnetic field and a magnetic dipole µI on nucleus I with position RI is,
compare eq. (1.28),

WµIB = −1
c

∫
dV AµI · JL = µI · σL(RI) ·B, (1.46)

where σL(RI) is the magnetic shielding of nucleus I, and

AµI = µI ×
r−RI

|r−RI |3
(1.47)

is the vector potential at r due to the nuclear dipole. An obvious “interchange theorem”
holds, that is,

WµIB = −1
c

∫
dV A · JµI , (1.48)

where
JµI =

e

mec
ρAµI (1.49)

is the Larmor–type current density induced by the nuclear magnetic dipole within the
distribution of electrons with charge −e and mass me. This definition complies with
eqs. (1.23). The interaction energy (1.46) is ≈ 106 times smaller than the direct inter-
action energy −µI · B. Accordingly, the dimensionless shielding tensor components are
customarily expressed in parts per million (p.p.m.).

The direct interaction energy of µI with another magnetic dipole, say µJ on nucleus
J , is

WµIµJ
D = −µIαBJ

Iα = −µJαBI
Jα, (1.50)

where
AJ

I = µJ ×
RIJ

R3
IJ

= −µJ ×∇IR
−1
IJ , (1.51)

RIJ = RI −RJ , ∇I ≡
∂

∂RI
, (1.52)

and
BJ

Iα = εαβγ∇IβAJ
Iγ = −DIJ

αβµJβ (1.53)

is the average magnetic field on nucleus I arising from the nuclear magnetic dipole µJ .
The direct coupling tensor is defined

DIJ
αβ =

(
R2

IJδαβ − 3RIJαRIJβ

)
R−5

IJ . (1.54)

The electron coupled, or indirect, interaction energy between the magnetic dipoles is

WµIµJ = −1
c

∫
dV AµJ · JµI = −1

c

∫
dV AµI · JµJ . (1.55)
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An indirect coupling tensor KIJ
αβ can be defined to account for this interaction: by substi-

tuting for eqs. (1.47) and (1.49) in eq. (1.55) one finds

WµIµJ = µIαµJβKIJ
αβ = −µIαBn

Iα, (1.56)

where

KIJ
αβ =

e2

mec2

∫
dV γ(r)|r−RI |−3

|r−RJ |−3 × [(r −RI)γ(r −RJ)γδαβ − (r −RJ)α(r −RI)β] . (1.57)

In terms of the second–rank current density tensor defined via

JµI
α = J µIβ

α µIβ (1.58)

the coupling tensor becomes

KIJ
αβ = −1

c
εδαγ

∫
dV

(r −RI)γ

|r−RI |3
J µJβ

δ (r). (1.59)

Therefore the n molecular electrons perturbed by the nuclear magnetic dipole µI induce
an average magnetic field on nucleus J

Bn
Jα = −KJI

αβµIβ, (1.60)

interacting with the probe µJα according to eq. (1.56).

5.1.6 Hamiltonian

For a collection of charges the Larmor theorem can be recast in terms of classical La-
grangian [1, 3, 4] and Hamiltonian of the system. The Hamiltonian formulation of the
problem is convenient for an extension to quantum mechanics [5–7]. As an example, let us
consider a diamagnetic atom in the presence of the vector potential A(r) generating the
uniform constant magnetic field B. We neglect the motion of the nucleus. Within the sta-
tionary reference system Ks, the classical Hamiltonian for n electrons with charge −e, mass
me, position ri, canonical momentum pi and angular momentum li = ri × pi, i = 1, 2...n,
(the subindex s is omitted to avoid clumsy notation) is, with obvious notation,

H =
1

2me

n∑
i=1

(
pi +

e

c
Ai

)2

≡ H0 + HB +
1
2
HBB, (1.61)

where V contains two–body Coulomb interactions depending only on the scalar distance
between particles, and, compare eq. (1.1) for the definition of L,

H0 =
1

2me

n∑
i=1

p2
i + V, (1.62)
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HB =
e

2mec
BαLα, (1.63)

HBB =
e2

4mec2
BαBβ

n∑
i=1

(
r2δαβ − rαrβ

)
i
. (1.64)

Introducing, via eqs. (1.3) and (1.9), the precession angular velocity ΩL = e
2mecB, one has

HB ≡ ΩLαLα, (1.65)

HBB ≡ ΩLαΩLβIαβ , (1.66)

where

Iαβ = m
n∑

i=1

(
r2δαβ − rαrβ

)
i

(1.67)

is the moment of inertia of the electron distribution.

The Hamiltonian function can be rewritten with respect to a coordinate system Kr

rotating with angular velocity ΩL [3]:

Hr = H − ΩLαLα, (1.68)

hence, in terms of coordinates in the rotating system, the Hamiltonian has the simple form

Hr = H0 +
1
2
HBB, (1.69)

that is, first–order terms in B have disappeared. Again we conclude that, if HBB is
disregarded, then the behaviour of the electrons in the rotating reference system is the
same as in the laboratory system in the absence of magnetic field.

However, we emphasize that HBB is not negligible per se. In fact, in the present
case of a diamagnetic atom, the spatial average of second–order Hamiltonian gives the
contribution to the energy

WL =
e2

12mc2
B2

n∑
i=1

(
r2
i

)Av
,

so that, in accordance with eqs. (1.31) and (1.36), Larmor average susceptibility is defined

χAv
L = −∂2WL

∂B2
,

and, more generally,

χLαβ = − ∂2WL

∂Bα∂Bβ
. (1.32′)
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5.1.7 Limits and contradictions of the classical approach

In the previous sections we have shown how far one can apparently go using classical
mechanics to understand diamagnetism. As matter of fact only the problem of a diamag-
netic isolated atom can be formally solved, provided that the origin of the vector potential
is fixed on the nucleus. A change of origin of the coordinate system, or more generally
a change of gauge of the vector potential introduces serious shortcomings. The case of
a molecule, where spherical symmetry is lost, becomes untractable: susceptibilities and
nuclear magnetic shieldings evaluated via Larmor–type theories depend on the origin of
the coordinate system. A step forward would be necessary to account for paramagnetism,
requiring further ad hoc hypotheses: classical approaches cannot provide more than a
qualitative explanation of magnetic phenomena. This is rather unsatisfactory; however,
major drawbacks arise from internal contradictions affecting classical theory [8].

If a charge q, moving with velocity v, is displaced by dr in time dt, the work done by
the magnetic field is clearly vanishing: from (1.10)

F · dr =
q

c
v ×B · vdt = 0.

Thus the energy of the charge is just the same as that in the absence of B. For a system
of charges this result apparently contradicts (1.5).

There is another difficulty, which cannot be solved on the basis of classical concepts. In
fact, according to statistical mechanics, the probability that, at temperature T , a system
will be at thermal equilibrium in a state of motion with energy W is ∝ exp

(
−W

kT

)
. If we

assume that only one of such states can exist, we must conclude that a magnetic field has
no effect on a classical system: at thermal equilibrium there will be no magnetic effect, no
induced magnetic dipole, no current density, neither diamagnetism, nor paramagnetism.

This crucial argument seriously questions the possibility of really understanding mag-
netism by means of classical mechanics, and proves the need for a quantum mechanical
theory of induced current densities.

5.2 QUANTUM MECHANICAL CURRENT DENSITY

5.2.1 Definition of current density from the Schrödinger equation

In 1926, shortly after Schrödinger famous paper [9] reporting the equation

HΨ = ih̄
∂

∂t
Ψ, (2.1)

Madelung [10] showed that it can split up into real and imaginary components, yielding two
“hydrodynamical” equations equivalent to (2.1), an equation of motion and an equation
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of continuity. To this end let us simply assume that Ψ is relative to one particle of mass
m and charge q. The Hamiltonian for the particle in the presence of electromagnetic field
with vector potential A and scalar potential φ is

H =
1

2m
π2 + qφ, (2.2)

where
π = p− q

c
A (2.3)

is the gauge–invariant mechanical momentum and p = −ih̄∇ is the canonical momentum.
Throughout this section we will assume the Coulomb gauge ∇ ·A = 0. 2 The norm

N =
∫

dτ |Ψ|2 (2.4)

is conserved in time. In fact from (2.1) and its complex conjugate,

H∗Ψ∗ = −ih̄
∂

∂t
Ψ∗, (2.1′)

one has, owing to the Hermitian character of H,

dN
dt

=
1
ih̄

∫
dτ [Ψ∗(HΨ)− (HΨ)∗Ψ] = 0. (2.5)

Multiplying (2.1) on the left by Ψ∗, subtracting (2.1′) multiplied by Ψ and using (2.2)
one finds an expression which can be rearranged in the form of a continuity equation,

∇ · j +
∂

∂t
γ = 0, (2.6)

where we interpret
γ = ΨΨ∗ (2.7)

as a probability density. The probability current density, also called number flux, j is
defined

j =
1
m
<(Ψ∗πΨ) ≡ jNL + jL, (2.8)

jL = − q

mc
AΨΨ∗, (2.9)

jNL =
1
m
<(Ψ∗pΨ) =

h̄

m
=(Ψ∗∇Ψ) =

h̄

m
(ΨR∇ΨI −ΨI∇ΨR) , (2.10)

assuming a complex form for the wavefunction, i.e.,

Ψ = ΨR + iΨI .

2In the “radiation gauge” one also imposes φ = 0. Alternatively one could introduce the Bloch gauge
[11]: this choice is convenient in the case of a charge distribution, as it leads immediately to the multipole
Hamiltonian.
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The charge density is ρ(r) = qγ(r) and the charge current density is J(r) = qj(r).
Thus, from (2.9), the quantum mechanical definition of Larmor charge current density
analogous to the classical (I.23) becomes

JL = − q2

mc
AΨΨ∗, (2.9′)

whereas qjNL describes a non–Larmor current density arising from other mechanisms.
Thus, in the case of electrons, the Larmor precession gives rise to the diamagnetic current

Jd = −ejd, (2.9′′)

where jd is obtained from (2.9) for q = −e. ¿From the non–Larmor density flow one has
the paramagnetic current density Jp = −ejNL.

The probability current density (2.8) is intrinsically arbitrary: one is always free to
add any divergenceless vector jADD = ∇×W, since (2.6) is still satisfied. The continuity
equation is much more general than the norm conservation (2.5). In fact, if

Ψ(r, t) = Φ(r) exp
(
− i

h̄
Et

)
is a stationary solution to the Schrödinger equation with energy eigenvalue E, then the
norm is obviously conserved in time for a bound system, whereas norm conservation has
no meaning for unbound systems, since Ψ is no longer square–integrable. In both cases,
however, the continuity equation is valid and, if γ does not depend explicitly on time, then
∇ · j = 0.

5.2.2 The hydrodynamical formulation of quantum mechanics

The hydrodynamical approach [10, 12–26] resembles classical mechanics; this becomes
transparent by expressing the wavefunction in the semiclassical form [7]

Ψ(r, t) = γ
1
2 (r, t) exp

[
i

h̄
S(r, t)

]
, (2.11)

ΨR = γ
1
2 cos

S

h̄
, ΨI = γ

1
2 sin

S

h̄
. (2.12)

If Ψ describes a stationary state, the action S = h̄=(lnΨ) satisfies the relationship

∂S

∂t
= −E,

and
Ψ = γ

1
2 exp

(
− i

h̄
Et

)
.

Ψ and ∇Ψ are assumed continuous and single–valued for any r, except at points where the
potential is infinite. Corresponding to those points, Ψ is still continuous, but ∇Ψ may be
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discontinuos. Consequently, γ
1
2 is continuous everywhere and ∇γ

1
2 is continuous except

at points where Ψ = 0. When Ψ = 0, neither the phase

S

h̄
= arctan

ΨI

ΨR
± πn′, n′ = 0, 1, 2 . . . , (2.13)

nor its gradient

∇
(

S

h̄

)
=
(
Ψ2

R + Ψ2
I

)−1
(ΨR∇ΨI −ΨI∇ΨR) = =(∇ lnΨ), (2.14)

are well defined. In the domain where Ψ is not vanishing ∇
(

S
h̄

)
is well defined, but

according to (2.13), the phase is only defined to multiples of π. However, a prescription
for determining the phase change in going around a loop has been given by Hirschfelder
et al. [20, 21].

Using ansatz (2.11), one finds from (2.1) and (2.2), by separating real and imaginary
parts, the “quantum correction” to the potential,

Vqu = − h̄2

2m
γ−

1
2∇2γ

1
2 , (2.15)

satisfying
1

2m
(∇S)2 − q

mc
A · ∇S +

q2

2mc2
A2 + qφ + Vqu +

∂S

∂t
= 0, (2.16)

and
∂

∂t
γ

1
2 +

1
2m

γ
1
2∇2S +

1
m

(
∇S − q

c
A
)
· ∇γ

1
2 = 0. (2.17)

In the classical limit for h̄ → 0, Vqu vanishes and relationship (2.16) becomes the Hamilton–
Jacobi equation of motion, which is formally obtained from the Hamilton equation by
putting

H = −∂S

∂t
, ∇S = p. (2.18)

Multiplying (2.17) by 2γ
1
2 , one can rewrite it in the form

∂γ

∂t
+∇ ·

[
1
m

γ

(
∇S − q

c
A
)]

= 0. (2.19)

It can be easily shown that (2.19) is the same as the continuity equation (2.6). In fact,
from (2.9) and (2.10), one has

jNL =
h̄

m
=(Ψ∗∇Ψ) =

1
m

γ∇S, (2.20)

jL = − q

mc
Aγ. (2.21)

In a gauge transformation

A → A′ = A +∇f(r, t), (2.22)
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Ψ → Ψ′ = Ψexp
(

iq

h̄c
f

)
, (2.23)

S → S′ = S +
q

c
f, (2.24)

and one finds from (2.20) and (2.21)

j′NL = jNL +
q

mc
γ∇f, (2.25)

j′L = jL −
q

mc
γ∇f, (2.26)

that is, Larmor and non–Larmor contributions to j are not uniquely defined, and only the
total probability current density is left invariant. Choosing

f = − c

q
S

one has in particular
j′ = jL, (2.27)

that is, the non–Larmor current density has been formally annihilated. This result is
valid in those points where S(r, t) is well defined, so that the irrotational vector ∇S
exists. Those points lie outside of the nodal regions of Ψ; in other words, the regime is
of the Larmor type in nodeless regions. In a node r0 of Ψ, ∇S is neither continuous nor
irrotational, that is

∇×∇S(r0, t) 6= 0

in general. Hence a physically meaningful non–Larmor current only exists about nodes of
Ψ.

¿From the quantum analog of the classic formula

j = γv, (2.28)

one defines the Madelung–Landau–London [10, 12, 13] local mean velocity

v = vNL + vL,

vNL =
1
m
∇S =

h̄

m

(
Ψ2

R + Ψ2
I

)−1
(ΨR∇ΨI −ΨI∇ΨR),

vL = − q

mc
A. (2.29)

This definition of the Larmor velocity can be compared with (I.26). We observe that
v(r, t) is not defined in the nodal regions of Ψ and that the non–Larmor contribution is
identically vanishing in the case of real wavefunctions.
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Hirschfelder et al. [20, 23] have introduced the idea of imaginary mean local velocity,
which is quite useful to rewrite the quantum correction Vqu to the potential energy in a
heuristic form. The mean local mechanical momentum can be written

Ψ−1πΨ =
mj
γ
− ih̄

2
∇ ln γ = mv + imvI , (2.30)

so that
vI = − h̄

2m
∇ ln γ (2.31)

is interpreted as imaginary mean local velocity. The quantum correction (2.15) to the
potential energy can be written

Vqu = −1
2
mv2

I +
1
2
h̄∇ · vI . (2.32)

¿From (2.19) and (2.29) the continuity equation becomes

∂γ

∂t
+∇ · (γv) = 0. (2.6′)

Owing to (2.19), the equation of motion (2.16) can be written

1
2
mv2 +

∂S

∂t
+ qφ + Vqu = 0. (2.33)

Let us operate with ∇ on the l.h.s. of (2.33) and use the expressions for the electric field

E = −∇φ− 1
c

∂

∂t
A, (2.34)

and for the magnetic field
B = ∇×A. (2.35)

The total differential for any vector W = W(r, t) is

dWα =
∂Wα

∂rβ
drβ +

∂Wα

∂t
dt,

so that
dW
dt

=
∂W
∂t

+ (v · ∇)W.

Using
1
2
∇(v · v) = (v · ∇)v + v × (∇× v),

one finds, in nodeless regions,

m
dv
dt

= q

(
E +

1
c
v ×B

)
−∇Vqu (2.36)

which, in the classical limit becomes the Newton equation of motion for a particle with
charge q acted upon by the Lorentz force [14].
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5.2.3 The vorticity condition

Formulae (2.19) and (2.36) are a system of four hydrodynamical–like equations for com-
pressible fluids. This hydrodynamical description is completely equivalent to (2.1) if and
only if the circulation of v satisfies the quantization condition [15–26]

4
(

S

h̄

)
=
∮

dr · ∇
(

S

h̄

)
=

m

h̄

∮
v · dr +

q

h̄c

∮
A · dr = 2πn′, n′ = 0,±1,±2 . . . , (2.37)

where 4
(

S
h̄

)
is the change in phase of Ψ on traversing the loop once (the loop must not

pass through a node of Ψ, since neither S nor ∇S are well defined there). This result
follows immediately from the fact that the phase of Ψ at a certain point is only defined
up to an integer multiple of 2π. ¿From the quantization condition one has that the loop
of circulation can be arbitrarily deformed and shrunk to a circle of radius zero, in which
4
(

S
h̄

)
= 0. This is consistent with the fact that, using the Stokes theorem in (2.37), one

must have
∇×∇S = m∇× v +

q

c
B = 0, (2.38)

outside of the nodal regions. The quantization condition (2.37) can be reformulated as a
vorticity condition [14–23] ∮

v · dr =
h

m
n′ − q

mc

∫∫
s
B · ds, (2.37′)

where ds = nsds, ds is an element of the surface enclosed by the loop of circulation and
ns is the unit vector locally perpendicular to ds, and

n′ =
1
2π

∫∫
s
={∇×∇ lnΨ} · ds. (2.39)

Outside of nodal regions of Ψ, ∇ lnΨ exists and

∇×∇ lnΨ = 0 = n′,

that is, there is a vortical Larmor regime. In the domains where Ψ = 0, ∇ lnΨ is not
defined, ∇×∇ lnΨ 6= 0 and a non–Larmor circulation, see also the discussion from (2.25)
to (2.27), adds to the Larmor precession.

As an example of circulation (2.37), let us consider the (unperturbed) hydrogen sta-
tionary electronic states

Ψ ≡ Ψnlm(r) = f(r, θ) exp(imφ).

From
v ≡ vNL =

h̄

m
=(∇ lnΨ),

expressing ∇ in polar coordinates, and indicating by uφ the azimuthal unit vector, one
finds ∮

v · dr ≡ h̄

m

∫ 2π

0
= (∇ lnΨ) · uφr sin θ dφ =

h̄

m
m

∫ 2π

0
dφ =

h

m
m,
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that is, the circulation number is just the familiar magnetic quantum number m.

It is convenient to introduce the idea of first–order current density tensor as in the
classical case (I.37), via the series

Jα(r) = J (0)
α (r) + J Bβ

α (r)Bβ + . . . (2.40)

The magnetic susceptibility and the nuclear magnetic shielding at nucleus I, with position
RI , can be rewritten, compare with eqs. (I.39) and (I.40),

χαδ =
1
2c

εαβγ

∫
dV rβJ Bδ

γ (r), (2.41)

σI
αδ = −1

c
εαβγ

∫
dV

rβ −RIβ

|r−RI |3
J Bδ

γ (r). (2.42)

As discussed by Hirschfelder [26], the probability density and the probability current
density are subobservables, that is, they are respectively the expectation value of the
operators

γOp(r0) = δ(r− r0), (2.43)

jOp(r0) =
1

2m
[π, δ]+ . (2.44)

Accordingly, the scalar function γ(r) and the vector field j(r) can be interpreted as classical
quantities. In particular, one can introduce the notion of trajectory in the j field as a
function of position r. This will be useful to visualize the streamlines.

The real autonomous system of differential equations for the trajectory in the v field,

dr
dt

= v, (2.45)

is equivalent to
dx

vx
=

dy

vy
=

dz

vz
. (2.45′)

This equation can be easily integrated to get the streamlines in the v field, but their
quantum mechanical meaning would be difficult to assess for the following reasons. We
have seen that vNL is zero in the case of real wavefunctions, for instance, in the absence
of magnetic field for diamagnetic systems, that are even under time reversal. Bohm [27]
explains it by stating that “the absence of motion is possible because the applied force
is balanced by the quantum mechanical force −∇Vqu produced by the Schrödinger field
acting on its own particle”. In any event, the vector v, interpreted as local mean velocity,
is not a subobservable, that is, there is no linear Hermitian operator for which it is the
expectation value. This limits the physical meaning of v; as a matter of fact, because of
the uncertainty principle, one should not attach too much significance to the behaviour of
v in regions whose dimensions are small compared to the de Broglie wavelength.
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However, as j = γv, the vorticity condition (2.37’) for v may be helpful to predict the
existence of vortices in the j field in the vicinity of the nodes of Ψ.

In order for a nodal region to have a non vanishing circulation, it must be capable
of trapping a loop [19]. In other words, it would be impossible to deform the loop of
circulation into a path excluding a node of Ψ. This can only happen if the nodal manifold is
boundariless, for instance, an infinite line, or a close curve, or any topologically equivalent
region, endless ribbon or rod. Thus we are left with the possibility of either axial vortices,
rotating around nodal manifolds which extend to the boundaries of space, or toroidal
vortices flowing up through the centre and down around the sides of a closed nodal line.

The considerations we have made so far for one particle cannot be easily generalized
to the case of an N−particle system. In practice it would be very difficult to determine
the topology of (3N−2) dimensional nodal manifolds associated with a multivalued phase
function in 3N−dimensional configuration space. Therefore, it is expedient to reduce the
dimensionality of the configuration space to three dimensions by introducing probabil-
ity density and current density matrices and their natural expansions, which lead to a
component analysis.

The N−particle current density field can thus be studied by analyzing a mixture of
separate one–particle contributions provided by distinct natural spin–orbitals. In this
hydrodynamical representation the many–components fluid is compressible, viscous and
rotational. Different components have different velocities, so that there may be diffusion:
the continuity equation (2.6) is not, in general, fulfilled for each separate component. This
may sometimes, limit the a priori analysis of the N−particle j field. Other methods are
to be sought to predict the general features of the current density, that is trajectories and
singularities. Powerful tools are provided by group theory and by the theory of differential
equations [28].

5.3 MOLECULAR MAGNETIC PROPERTIES AND ELEC-
TRONIC CURRENT DENSITY

5.3.1 Quantum mechanical current density in a molecule

The n-electron wavefunction of a molecule Ψ(x1,x2 . . .xn) is written in terms of space
and spin coordinates xi = ri × si, and the (probability) density matrix is defined [29]

P1
(
r; r′

)
= n

∫
dx2 . . . dxn Ψ(r,x2, . . .xn)Ψ∗(r′,x2 . . .xn). (3.1)

The electronic current density is introduced in the form [29]

J(r) = − e

me
<
[
πP1

(
r; r′

)]
r′=r , (3.2)
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where the mechanical momentum operator (2.3) for one electron becomes

π = p +
e

c
A. (3.3)

In the presence of a space–uniform, time–independent magnetic field with flux B, and of
a permanent magnetic dipole µI on the I–th nucleus, A = AB + AµI , with

AB =
1
2
B× (r− r0), AµI = µI ×

r−RI

|r−RI |3
, (3.4)

(the origin r0 is arbitrary and can be put equal to 0 without loss of generality). The
n-electron wavefunction is conveniently written as a perturbation expansion

Ψ = Ψ0 + ΨB ·B + ΨµI · µI + · · · . (3.5)

¿From Rayleigh-Schrödinger perturbation theory, the first–order electronic wavefunc-
tion in the presence of magnetic field is∣∣∣ΨB

〉
= − e

2mech̄

∑
j 6=a

ω−1
ja |j〉〈j|L|a〉, (3.6)

denoting by |a〉 ≡ |Ψ0〉 the reference state
∣∣∣Ψ(0)

a

〉
. As the perturbations arising from the

external magnetic field and the intrinsic nuclear moment are represented by purely imagi-
nary terms in the first–order interaction Hamiltonian, there is no first–order correction to
the diagonal elements of density matrix (3.1), i.e., the electronic charge distribution is not
modified: stationary currents are induced. ¿From eqs. (3.2)–(3.5), the electronic current
density can be written as a sum of paramagnetic and diamagnetic contributions,

JB = JB
p + JB

d , (3.7)

where

JB
d (r) = − e2

2mec
B× rγ(r), (3.8)

is related to the diagonal (probability) density

γ(r) = P1 (r; r) , (3.9)

and the paramagnetic contribution is written via eq. (3.6)

JB
p (r) = − ne

me

∫
dx2 . . . dxn

[
B ·ΨB∗(r,x2, . . .xn)pΨ0(r,x2, . . .xn)

+ Ψ∗0(r,x2 . . .xn)pB ·ΨB(r,x2, . . .xn)
]
. (3.10)

The integral condition for charge–current conservation (I.45) becomes, in the present case
of n electrons, ∫

JB
α dr = 0, (3.11)
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which, according to eq. (3.7), can be recast in the form [30]∫ (
JB

dα + JB
pα

)
dr =

e2

2m2
ec

[
(Pα, Lβ)−1 −meεαβγ 〈a|Rγ |a〉

]
= 0, (3.12)

where
(Pα, Lβ)−1 ≡

1
h̄

∑
j 6=a

2
ωja

< (〈a|Pα|j〉 〈j|Lβ|a〉) . (3.13)

Accordingly, conservation of pure paramagnetic current density along the direction of the
field is guaranteed by symmetry. Identity (3.12) can be proven directly via the off-diagonal
hypervirial relation

〈j|P|a〉 = imeωja〈j|R|a〉. (3.14)

In analogy to eqs. (I.37) and (2.40) a second–rank current density tensor is introduced
via

JB
α = J Bβ

α Bβ, (3.15)

so that magnetic susceptibility and nuclear magnetic shielding are again defined

χαδ =
1
2c

εαβγ

∫
rβJ Bδ

γ (r)dr, (3.16)

σI
αδ = −1

c
εαβγ

∫
rβ −RIβ

|r−RI |3
J Bδ

γ (r)dr. (3.17)

These relationships are formally identical to eqs. (I.39), (I.40) and to eqs. (2.41), (2.42). It
should be emphasized, however, that eqs. (3.16) and (3.17) are now written in terms of an
N−electron current density accounting for both Larmor and non–Larmor contributions.

5.3.2 Invariance of current density to a change of coordinate system

As observed in the one–particle case, total current density (3.7) and magnetic proper-
ties (3.16) and (3.17) must be invariant to an arbitrary gauge transformation of the vector
potential, see the first of eqs. (3.4),

AB′ → AB′′
= AB′

+∇f, AB′
=

1
2
B× (r− r′), (3.18)

where f = f(r) is an arbitrary function well-behaved for r → ∞. A shift of the origin of
coordinates by a vector d,

r′ → r′′ = r′ + d, (3.19)

is equivalent to a gauge transformation (3.18) where f = (r′′ − r′) · AB′
. This origin

translation does not affect total values, but diamagnetic and paramagnetic contributions
to current density (3.7), and to properties (3.16) and (3.17), transform into each other.

The important connection between continuity equation and gauge independence has
been already recalled in Chapter I: in fact, constraint (3.12) also insures invariance of
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magnetic susceptibility to a gauge translation [30–33]. Total current density is a vector
function of position, i.e., JB = JB(r), where the origin can be arbitrarily chosen. In
an arbitrary change of gauge, in particular in a change of coordinate system (3.19), this
function stays the same whenever the wavefunction Ψ, compare eqs. (3.1) and (3.2), is an
exact eigenstate to a model Hamiltonian [30],

JB(r− r′′) = JB(r− r′) + J(r′′−r′)×B
d (r)

+J(r′′−r′)×B
p (r) = JB(r− r′) ≡ JB(r), (3.20)

(this notation implies that diamagnetic and paramagnetic components, which depend on
the coordinate system, are evaluated corresponding to different origins). Consistent with
eq. (3.20), the diamagnetic contribution to the current density transforms to [31]

JB
d (r− r′′) = JB

d (r− r′) + J(r′′−r′)×B
d (r), (3.21)

where

J(r′′−r′)×B
d (r) = − e2

2mec
(r′′ − r′)×Bγ(r), (3.22)

and the paramagnetic contribution transforms to

JB
p (r− r′′) = JB

p (r− r′) + J(r′′−r′)×B
p (r), (3.23)

where

J(r′′−r′)×B
p (r) = − e

me
n

∫
dx2 . . . dxn

[
(r′′ − r′)×B ·Ψ(r′′−r′)×B∗pΨ0

+ Ψ∗0p(r′′ − r′)×B ·Ψ(r′′−r′)×B
]
, (3.24)

introducing the perturbed function∣∣∣Ψ(r′′−r′)×B
〉

= − e

2mech̄

∑
j 6=a

ω−1
ja |j〉〈j|P|a〉. (3.25)

It is worth noticing that current density terms (3.22) and (3.24) do not depend on the
origin. The condition for invariance of total current density is therefore

J(r′′−r′)×B
p + J(r′′−r′)×B

d = 0, (3.26)

which can be proven directly via hypervirial relation (3.14).

5.3.3 Annihilation of diamagnetic contribution to current density

Transformed diamagnetic current density term, JB
d (r − r′′), can be formally annihilated

for every point r, all over the molecular domain, by choosing that point as origin, i.e.,
setting r′′ = r, compare eq. (3.21), so that

JB
d (r− r′) = −J(r−r′)×B

d (r), (3.27)
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within a scheme described as “continuous trasformation of origin of the current density”,
see Refs. [35, 31–34]. This procedure amounts to choosing a function d(r) = r instead
of a constant vector d in eq. (3.19). As a matter of fact, this pointwise procedure is
not necessary, as the problem can be given a fully analytical solution via equations in
closed form [31]. As the diamagnetic term is set to zero, this procedure is indicated by
the acronym CTOCD–DZ. Total current becomes completely paramagnetic in form, and
contains two terms defined in the former coordinate system, i.e.,

JB(r) = JB
p (r− r′) + J(r−r′)×B

p (r), (3.28)

where, compare eq. (3.24),

J(r−r′)×B
p (r) = − en

me

∫
dx2 . . . dxn

[
(r′′ − r′)×B ·Ψ(r′′−r′)×B∗pΨ0

+ Ψ∗0p(r′′ − r′)×B ·Ψ(r′′−r′)×B
]
r′′=r

, (3.29)

(this notation means that r′′ is put equal to r after operating with p). As total current
density is an invariant, mapped onto itself by any transformation, comparison between
eqs (3.7) and (3.28) necessarily implies (which is not useful as a calculation recipe) that

J(r−r′)×B
p (r) = JB

d (r− r′), (3.30)

for every r. This relationship can be directly proven via eqs. (3.8) and (3.29), using iden-
tity (3.14), for every plane perpendicular to B, where the original diamagnetic circulation
takes place. On the other hand, formal replacement according to eq. (3.30) of diamagnetic
term (3.8) with a paramagnetic one in eq. (3.28), introduces a spurious (paramagnetic)
component along the inducing magnetic field. In fact, the parallel component in eq. (3.29)
is unphysical and must be discarded. Anyway, this extra current automatically fulfills
conservation condition (3.11), if off–diagonal hypervirial relationship (3.14) is satisfied.
Let us assume that the external magnetic is aligned with the z axis, i.e., B ≡ e3B, then

J (r−r′)×B
pz = −neB

me

∫
dx2 . . . dxn ×

[(
y − y′

) (
Ψ(r−r′)×B∗

x pzΨ0 + Ψ∗0pzΨ(r−r′)×B
x

)
−(x− x′)

(
Ψ(r−r′)×B∗

y pzΨ0 + Ψ∗0pzΨ(r−r′)×B
y

)]
. (3.31)

This integral contains vanishing tensors of the form(
Px,

n∑
i=1

yipiz

)
−1

=
1
h̄

∑
j 6=a

2
ωja

<
(
〈a|Px|j〉

〈
j

∣∣∣∣∣
n∑

i=1

yipiz

∣∣∣∣∣ a
〉)

= − ıme

h̄

〈
a

∣∣∣∣∣
[
Rx,

n∑
i=1

yipiz

]∣∣∣∣∣ a
〉

= 0, (3.32)

so that ∫
J (r−r′)×B

pz dr =
e2B

2m2
ec

(Px,
n∑

i=1

yipiz

)
−1

−
(

Py,
n∑

i=1

xipiz

)
−1
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= − ıe2B

2mech̄

{〈
a

∣∣∣∣∣
[
Rx,

n∑
i=1

yipiz

]∣∣∣∣∣ a
〉

+

〈
a

∣∣∣∣∣
[
Ry,

n∑
i=1

xipiz

]∣∣∣∣∣ a
〉}

= 0. (3.33)

A more general relationship, consistent with constraint (3.12),∫
J (r−r′)×B

pα dr =
∫

JB
dα dr = − e2

2mec
εαβγBβ 〈a|Rγ |a〉 , (3.34)

is found using eq. (3.14).

Within the notation of previous papers [30–34], the magnetic susceptibility and the
magnetic shielding of the I-th nucleus are conventionally defined as sums of paramagnetic
and diamagnetic contributions,

χp
αβ =

e2

4c2m2
eh̄

∑
j 6=a

2
ωja

< (〈a|Lα|j〉〈j|Lβ|a〉) , (3.35)

χd
αβ = − e2

4mec2

〈
a

∣∣∣∣∣
n∑

i=1

(
r2
γδαβ − rαrβ

)
i

∣∣∣∣∣ a
〉

, (3.36)

σpI
αβ = − e2

2m2
ec

2h̄

∑
j 6=a

2
ωja

<(〈a|Mn
Iα|j〉 〈j|Lβ|〉), (3.37)

σdI
αβ =

e

2mec2

〈
a

∣∣∣∣∣
n∑

i=1

(
riγEi

Iγδαβ − riαEi
Iβ

)∣∣∣∣∣ a
〉

. (3.38)

Within the CTOCD–DZ scheme the magnetic properties become

χδγ = χp
δγ + χ∆

δγ , σδγ = σpI
δγ + σ∆I

δγ , (3.39)

where

χ∆
δγ =

e2

4m2
ec

2h̄
εαβγ

∑
j 6=a

ω−1
ja

{〈
a

∣∣∣∣∣
n∑

i=1

[
(rβ − r′β)lδ

]
i

∣∣∣∣∣ j
〉
〈j|Pα|a〉

+ 〈a|Pα|j〉
〈

j

∣∣∣∣∣
n∑

i=1

[
(rβ − r′β)lδ

]
i

∣∣∣∣∣ a
〉}

, (3.40)

σ∆I
δγ = − e2

2m2
ec

2h̄
εαβγ

∑
j 6=a

ω−1
ja

{〈
a

∣∣∣∣∣
n∑

i=1

(riβ − r′β)mi
Iδ

∣∣∣∣∣ j
〉
〈j|Pα|a〉

+ 〈a |Pα| j〉
〈

j

∣∣∣∣∣
n∑

i=1

(riβ − r′β)mi
Iδ

∣∣∣∣∣ a
〉}

, (3.41)



131

denoting

mi
I = |ri −RI |−3 li(RI) =

1
e
Ei

I × pi. (3.42)

In approximate calculations adopting the algebraic approximation CTOCD–DZ ap-
proach proved to be quite useful: all of the shielding tensor components are indepen-
dent of origin, and magnetic susceptibility is origin independent in center–symmetric
molecules [31–34].

5.3.4 Annihilation of paramagnetic contribution to current density

Another method for calculating magnetic properties has been devised, within the frame-
work of a continuous transformation of origin of current density, formally setting the para-
magnetic contribution to zero all over the molecular domain (CTOCD–PZ), see Refs. [34].
To this end, a wider class of transformation functions d = d(r) has been introduced [32].
The function killing the paramagnetic current density contribution can be evaluated point-
wise via the condition, compare eq. (3.23),

JB
p (r− r′) = −Jd×B

p (r), (3.43)

which furnishes the 3× 3 system of linear equations

Md = T, (3.44)

where, compare eq. (3.25),

Mδβ =
e

me
nεαβγBγ

∫
dx2 . . . dxn

[
Ψd×B∗

α pδΨ0 + Ψ∗0pδΨd×B
α

]
, (3.45)

and
Tδ = − e

me
nBα

∫
dx2 . . . dxn

[
ΨB∗

α pδΨ0 + Ψ∗0pδΨB
α

]
. (3.46)

Matrix M is singular, as it is evident from definition (3.45). This is consistent with
the fact that complete annihilation of paramagnetic current is not physically possible;
in particular the component parallel to the magnetic field cannot be set to zero, as a
diamagnetic contribution is always perpendicular to B. However, one needs to solve, for
each point in real space, a 2 × 2 subsystem of (3.44) to annihilate only the components
of the paramagnetic current perpendicular to B; for instance, if B ≡ e3B, only dx and dy

are to be calculated.

Although the function d = d(r) is not known analytically in the case of an approx-
imate wavefunction, its expectation value over that wavefunction can be approximately
calculated via eqs. (3.45) and (3.46). Defining the operator

Dα =
n∑

i=1

diα, (3.47)
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it is found ∫
Tα(r)dr =

e2Bβ

2m2
ech̄

(Pα, Lβ)−1 , (3.48)

∫
Mαβ(r)dβ(r)dr = − e2Bβ

2m2
ec

εβγδ

(
Pγ ,

n∑
i=1

diδpiα

)
−1

=
e2Bβ

2mec
εαβγ 〈a |Dγ | a〉 , (3.49)

so that, owing to eq. (3.44),∫
dγ(r)γ(r)dr = 〈a|Dγ |a〉 =

1
2me

εαβγ (Pα, Lβ)−1 . (3.50)

As hypervirial relationship (3.14) has been used to write the second of identities (3.49),
constraint (3.50) is exactly fulfilled only in the case of exact eigenfunctions to a model
Hamiltonian, e.g., in the Hartree–Fock method.

The expectation value of the moments of d function is also known a priori, as it is
related to the conventional paramagnetic contribution to susceptibility, vide infra.

Within the CTOCD–PZ scheme the current density is completely diamagnetic in form,

JB(r) = JB
d (r− r′) + Jd×B

d (r) =

− e2

2mec
B× [r− d(r)]γ(r), (3.51)

and, from the invariance constraint (3.26) and eq. (3.43),

Jd×B
d (r) = JB

p (r− r′). (3.52)

This relationship (which does not provide a recipe for calculation of the shift functions
in the approximate case) yields the definition of exact d(r),

dγ(r) =

−n
c

e
γ−1(r)εαβγ

∫
dx2 . . . dxn

[
ΨB∗

β (r,x2 . . .xn)pαΨ0(r,x2, . . .xn) +Ψ∗0(r,x2, . . .xn)pαΨB
β (r,x2 . . .xn)

]
,

(3.53)
so that, consistent with hypervirial condition (3.14), and with eq. (3.50), by integrat-
ing (3.53) it is obtained

〈a|Dγ |a〉 = 〈a|Rγ |a〉 . (3.54)

This identity is only valid for an exact eigenfunction to a model Hamiltonian, according
to constraint (3.12).

Current density tensors within the CTOCD–PZ method can be defined,

J (d×B)β

pδ (r) = − ne

me

∫
dx2 . . . dxn

[
Ψ(d×B)∗

β (r,x2 . . .xn)pαΨ0(r,x2, . . .xn)
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+Ψ∗0(r,x2, . . .xn)pαΨ(d×B)
β (r,x2 . . .xn)

]
, (3.55)

J (d×B)β

dα (r) = − e2

2mec
δαβγ(r), (3.56)

so that
J (d×B)

α =
(
J (d×B)β

dα + J (d×B)β
pα

)
εβγδdγBδ. (3.57)

Allowing for definitions (3.55) and (3.56), “paramagnetic” Π–contributions to magnetic
properties can be recast in integral form,

χΠ
αδ =

1
2c

εαβγελµδ

∫
rβJ

(d×B)λ
dγ (r)dµ(r)dr =

e2

4mec
2

∫
γ(r) [dβ(r)rβδαδ − dα(r)rδ] dr

=
e2

4mec
2

〈
a

∣∣∣∣∣
n∑

i=1

(dβrβδαδ − dαrδ)i

∣∣∣∣∣ a
〉

, (3.58)

σΠI
αδ = − 1

ec
εαβγελµδ

∫
EIβ(r)J (d×B)λ

dγ (r)dµ(r)dr = − e

2mec
2

∫
γ(r) [dβ(r)EIβ(r)δαδ − dα(r)EIδ(r)] dr

= − e

2mec
2

〈
a

∣∣∣∣∣
n∑

i=1

(
diβEi

Iβδαδ − diαEi
Iδ

)
i

∣∣∣∣∣ a
〉

, (3.59)

where the operator for the electric field exerted by an electron with position r on nucleus
I is denoted by

EIβ(r) = e
rβ −RIβ

|r−RI |3
. (3.60)

It can be easily shown that contributions (3.58) and (3.59) reduce to the conventional
paramagnetic terms. Using identity (3.53) in the form

ελµδdµ(r)γ(r)

= −2nc

e

∫
dx2 . . . dxn

[
ΨB∗

δ (r,x2 . . .xn)pλΨ0(r,x2, . . .xn) +Ψ∗0(r,x2, . . .xn)pλΨB
δ (r,x2 . . .xn)

]
,

(3.61)
in eqs. (3.58) and (3.59), the familiar van Vleck [6] and Ramsey [36] terms, compare
eqs. (3.35)–(3.38) are recovered,

χΠ
αβ =

e2

4c2m2
eh̄

∑
j 6=a

2
ωja

< (〈a|Lα|j〉〈j|Lβ |a〉) = χp
αβ , (3.62)

σΠI
αβ = − e2

2m2
ec

2h̄

∑
j 6=a

2
ωja

<(〈a|Mn
Iα|j〉 〈j|Lβ |a〉) = σpI

αβ . (3.63)

Eventually, the physical requirement that χΠ
αβ = χΠ

βα in definition (3.50) amounts to a
“parallelism condition”,

εαβγ

∫
dβ(r)rγγ(r)dr = 0, (3.64)

which can be proven via eq. (3.53).
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5.3.5 Gauge translation

It is now interesting to check the dependence of CTOCD–PZ properties on a gauge trans-
lation (3.19). Assuming the origin shift v = r′′ − r′, we find

χd
αβ(r

′′
)

= χd
αβ(r

′
) +

e2

4mec2
{δαβ [2vγ 〈a|Rγ |a〉 − nvγvγ ] −vα 〈a|Rβ |a〉 − vβ 〈a|Rα|a〉+ nvαvβ} ,

(3.65)

χΠ
αβ(r′′) =

χΠ
αβ(r′)− e2

4mec2
{δαβ [vγ (〈a |Rγ | a〉+ 〈a |Dγ | a〉)− nvγvγ ] . −vα 〈a |Rβ| a〉 − vβ 〈a |Dα| a〉+ nvαvβ} ,

(3.66)

Comparing eqs. (3.65) and (3.66) for magnetizability, one can notice the exact cancel-
lation of the quadratic term in v. Therefore, theoretical components of total CTOCD–PZ
magnetizability tensor depend only linearly on the change of origin. The constraint for
invariance of magnetic susceptibility to a gauge traslation is provided by identity (3.54),
which is also consistent with the integral condition for charge–current conservation,∫

JB
α dr =

∫
JB

dαdr +
∫

Jd×B
dα dr = 0. (3.67)

These equations indicate that total CTOCD–PZ magnetic susceptibility is invariant to a
gauge translation in the case of center–symmetric molecule, where 〈a|R|a〉 = 〈a|D|a〉 = 0.
At any rate, even if these expectation values are calculated over approximate wavefunc-
tions, their difference is generally expected to be rather small. In other words, CTOCD–PZ
magnetic susceptibilities are characterized by a fairly good degree of origin independence
also within the algebraic approximation, using basis sets of small size.

Interestingly enough, total components of the shielding tensors evaluated within the
CTOCD–PZ method are independent of gauge translation, as in the CTOCD–DZ scheme,
irrespective of the approximations adopted to evaluate electronic wavefunctions, as there is
exact cancellation between “paramagnetic” Π–contributions and ordinary d–contributions,
according to formulae

σdI
αβ(r

′′
) = σdI

αβ(r
′
)− e

2mec2
(vγ

〈
a|En

Iγ |a
〉

δαβ − vα

〈
a|En

Iβ|a
〉
), (3.68)

σΠI
αβ (r′′) = σΠI

αβ (r′) +
e

2mec2
(vγ〈a|En

Iγ |a〉δαβ − vα〈a|En
Iβ|a〉). (3.69)
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