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Introduction

The importance of getting a good understanding of surrounding media effects on chemical
systems can hardly be overestimated. Applications range from condensed phase chemistry
to biochemical reactions in vitro and to biological systems in vivo.

With the enormous progress achieved by computer technology, an increasing number
of models and phenomenological approaches are being used to describe the effects of a
given surrounding medium on the electronic properties of selected subsystem. A number of
quantum chemical methods and programs, currently applied to calculate in vacuo systems,
have been supplemented with a variety of solvation models.

Theoretical studies about the solvent effects on the properties and behavior of molecules
are generally performed according to a large variety of methods; however, for our scopes,
it is useful to classify them according to two basically different strategies. In the former,
which we shall not treat at all, we can collect supermolecule calculations and computer
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simulations. Even if the philosophy of these two approaches is quite different, in both
cases one looks for a detailed description of the disposition and structure of molecules
composing the liquid system.

The latter strategy, often complementary to the former, collects methods in which a
target subsystem, the “solute” (possibly supplemented by a few nearby solvent molecules)
is described at the microscopic level, while a secondary subsystem (“the solvent”) is mod-
eled as an infinite macroscopic continuum medium having suitable properties.

Several approaches can be classified in this second domain. Some among them belong
to the category of semiempirical methods and some play a role in the study of complex
solutes (e.g. molecules of biological interest). Other retain the formalism of the in vacuo
ab initio molecular calculations, including in the Hamiltonian an explicit expression of the
solute-solvent potential. In the present work we shall focus our attention almost exclusively
on this last approach, also known as Effective Hamiltonian Method (EHM).

a) Theoretical Aspects and Computational Methods

8.1 The Effective Hamiltonian and the Free Energy

The effective Hamiltonian method has been widely used to study solvent effects in chemical
and biological systems. In this method the solvent S is represented by a homogeneous
continuum medium which is polarized by the solute M placed in a cavity built in the
bulk of the dielectric. The solute-solvent interactions are described in terms of a solvent
reaction field.

In the quantum-mechanical (QM) version of the method the solute molecule is studied
ab initio and the interactions with the solvent are taken into account through an interaction
potential V̂R which acts as a perturbation on the solute Hamiltonian:

Ĥ0Ψ0 = E0Ψ0 in vacuo (8.1)[
Ĥ0 + V̂R

]
Ψ = EΨ in solution (8.2)

where Ĥ0 is the Hamiltonian of the solute in vacuo and Ψ0 and Ψ are the solute wave
functions in vacuo and in solution, respectively.

In eq.(8.1) the Born-Oppenheimer approximation is employed. This implies the stan-
dard partition of the Hamiltonian into an electronic and a nuclear part, as well as the
factorization of the wave function into an electronic and a nuclear component. In this
approximation eqs. 8.1 and 8.2 refer to the electronic wave function, and the electronic
operators Ĥ0 and V̂R parametrically depend on the nuclear coordinates.
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The definition of the interaction potential V̂R implies the knowledge of a thermally
averaged distribution function of the solvent molecules, gS . The details of this averaged
distribution may change in the various realizations of the model, keeping fixed the con-
tinuity of the function itself. Actually, the basic continuum model involves a simplified
form of the distribution function; gs is reduced to describe a linear isotropic continuum,
characterized by the static dielectric constant ε of the bulk solvent, which, in turn, depends
on temperature and pressure.

Since the perturbation operator V̂R in turn linearly depends on the solute wave function
Ψ, the Schödinger equation 8.2 is not linear. In these conditions it can be shown that the
variational energy has to be calculated by minimizing the functional

G(Ψ) =

〈
Ψ

∣∣∣∣Ĥ0 +
1

2
V̂R

∣∣∣∣Ψ
〉

(8.3)

and that the resulting quantity has the status of a free energy. Then the free energy
of a molecule in solution can be written

Gel =
〈

Ψ
∣∣∣Ĥ0

∣∣∣Ψ
〉

+
1

2

〈
Ψ
∣∣∣V̂R

∣∣∣Ψ
〉

+ VNN +
1

2
UNN (8.4)

where VNN is the usual nuclear repulsion energy, and UNN is the interaction energy
between the solute nuclei and the solvent reaction field generated by the solute nuclei
themselves (the factor 1

2 ensures that this contribution is a free energy).

Usually, in V̂R one includes elettrostatic solute solvent interactions only: other con-
tributions, due to steric, dispersive and repulsive interactions can be added to obtain the
free energy in solution

G = Gel +Gster +Gdis +Grep (8.5)

In many computational approaches, Gster, Gdis and Grep are calculated by classical
algorithms, modifying the solute energy but not its wave function. However, recent devel-
opments allow one to include in the solute Hamiltonian some terms related to dispersion-
repulsion interactions.

Before examining in detail the various contributions to the free energy and their com-
putational expressions, in the next section we shall illustrate how the whole system is
partitioned between solute and solvent.

8.2 The solute cavity and its tessellation

In all the EHM approaches, one defines an empty cavity in the dielectric medium in which
the solute M resides. The shape and size of the cavity are critical factors in the elaboration
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of a method. A cavity with a wrong shape introduces distortions in the description of the
reaction field and of the related solvent effects.

The cavity shapes actually employed can be classified as follows:

1. regular shapes (i.e. spheres, ellipsoids, and cylinders);

2. molecular shapes given by the union of overlapping spheres;

3. molecular shapes obtained by exploiting the definition of specific molecular shape
functions;

4. isodensity surfaces.

In the following we shall limit our analysis to the molecular shapes only, which are the
most used in the methods we shall describe in the next sections. About the procedures
corresponding to the item 4 of our classification, namely those giving cavities determined
directly from solute isodensity surfaces, we limit to recall that in their most refined ver-
sions they may evaluate the isodensity surface in a self consistent way with the quantum
mechanical calculation of the solute wave function [1].

Before going inside the technical details of the single procedures giving cavities of type
2) and 3), here represented by the two computational techniques called GEPOL [2] and
DEFPOL [3] respectively, a further classification must be introduced: in general we can
define three main kinds of surfaces:

1. the proper van der Waals surface (Sw), which is the external surface resulting from
a set of spheres centered on the atoms or group of atoms forming the solute;

2. the solvent accessible surface (Sa), defined as the surface generated by the center of
the solvent, considered as a rigid sphere, when it rolls on the van der Waals surface;

3. the solvent excluding surface (Se), which can be defined as the contact surface of
a probe sphere (with radius equal to the molecular radius of the solvent molecules)
rolling on the van der Waals surface.

It is easy to see that Sa can be equivalently defined as a Sw with radii enlarged by a
quantity equal to the radius of the solvent, and that the last definition corresponds to the
molecular cavity defined by Richards [4].

The choice of the type of surface to be used depends on the specific solute-solvent
interactions which are taken into account in the calculation, as we shall see in the following.
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8.2.1 GEPOL

GEPOL [2] describes van der Waals (Sa) cavities in terms of spheres centered on solute
atoms, and it approximates solvent excluding surfaces (Se) by adding some additional
spheres to Sa. Se’s are created with a sequential algorithm: when two sphere of the Sa
cavity are close enough to exclude the solvent from the space between them, one or two
additional spheres, not centered on atoms, are added, and the procedure is repeated to a
prefixed threshold, considering all the possible couples of spheres.

The surface of each sphere is then partitioned into triangular tesserae, corresponding
to the projection of the faces of a suitable polyhedron inscribed in the sphere. This
polyhedron may be defined in different ways, for example a geodesic partition based on
pentakisdodecahedron giving origin to 60, 240, or 960 faces can be used (numerical tests
have shown that the value of 60 is the best compromise between effectiveness and fastness,
and this is the partition most used in the practice). Tesserae with all the vertices inside the
cavity are discarded, while those whose surface is partially covered by some other spheres
are replaced by suitable polygonal tesserae. In the most recent version of GEPOL [5] the
area ak of the polygonal tessera k is calculated by applying the Gauss-Bonnet theorem:

ak = R2
k


2π +

Nk∑

n

Φn cosϑn −
Nk∑

n

ωn


 (8.6)

where Rk is the radius of the sphere which the tessera k belongs to, Φn the angle subtending
the edge n of the polygon (there are Nk edges), ϑn the polar angle, and ωn the exterior
angle of vertex n.

The most important characteristic of this formula is that it allows an analytical ex-
pression for the first derivatives of ak with respect to all the relevant nuclear coordinates,
including nucleus k but also the other nuclei defining the spheres which cut tessera k
(actually, the derivatives also depend on the position and radius of the added spheres
eventually cutting k) [5]. The computation of this quantity, as we shall see in a following
section, is a necessary step in the calculation of free energy derivatives with respect to
nuclear coordinates as requested by standard geometry optimization techniques.

8.2.2 DEFPOL

This procedure [3], giving molecular cavities of type 3), starts from the definition, for
the solute M at a given geometry, of an appropriate shape function whose value is 1 if
calculated inside the molecular cavity and 0 otherwise. The molecular shape function is
expressed as the union of hard-sphere shape functions fhs(A) centered on the atoms of M :

fhs(M) =
∨

A∈M
fhs(A) (8.7)

where
∨

is the logical operator “or” (inclusive) which runs over the atoms of the solute,
and fhs(A) the atomic shape function, related to the van der Waals radius, eventually
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multiplied by a suitable numerical factor, of the atomic sphere and depending on the
position of atom A. The molecular shape function given in eq.(8.7) is sufficient to define
Sw or Sa, the only change needed is on the value of the scaling factor multiplying each
radius, but not to define Se. The latter has to be computed by supplementing fhs(M)
with a further shape function, called “obstruction shape function”, fobs(M):

fSe(M) = fobs(M)
∨
fhs(M) (8.8)

The analytical determination of fobs(M) can be obtained by resorting to a cluster expan-
sion, i.e. a sum of contributions due to pairs, triplets, etc., of atoms (it can be shown that
the expansion can be limited to pairs and triplets). Having thus defined the suitable shape
functions, the next step is to inscribe a regular polyhedron with planar triangular faces (re-
garding its choice, considerations given for GEPOL are valid also here) into a unit sphere
centered on the center of mass of the molecule, and to adapt it with a sequence of defor-
mations. The first deformation consists in the projection of the polyhedron on the main
inertia ellipsoid of the molecule. The vertices of triangular faces are then shifted toward
the molecular center of mass so as to touch the surface of the shape function. This shift
is followed by the definition of an auxiliary point, placed at the intersection of the shape
function surface with the axis perpendicular to the triangle and passing through its center.
The sphere defined by these four points is then defined, and the planar triangle is replaced
by its spherical counterpart. At the end of the whole process one obtains a tessellation of
the cavity in terms of spherical triangles only (and not, as GEPOL, in spherical triangles
supplemented by spherical polygons), but with both concave and convex curvature.

8.3 The contributions to the free energy

8.3.1 Steric contribution.

This term, whose contribution to G is more often called ‘cavitation free energy’, Gcav,
corresponds to the work spent in building up a cavity of appropriate shape and volume
in which the solute molecule is enclosed, with all the other solute-solvent interactions
switched off: its effects on the system are only of energetic nature.

For the evaluation of Gcav several formulas are available, based on the shape and size
of the solute and on different parameters of the solvent: surface tension [6], surface tension
with microscopic corrections [7], isothermal compressibility [8], and geometrical data of
the molecules [9, 10]. The first three formulas here mentioned are of empirical nature
and follow almost the same philosophy of the continuum dielectric, neglecting the discrete
nature of the solvent molecules but making use of experimental bulk parameters. The last
formulation, on the contrary, derives from a theory based on a discrete model of fluids
(the Scaled Particle Theory, SPT), even if the final expression of Gcav depends again on
bulk solvent parameters only.

The common characteristic of all these different formulations is that their formal def-
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inition has been derived only for spherical, or at most ellipsoid, cavities. Actually, the
largest part of the computational codes for calculations in solution makes use of more
complex molecular cavities, often formed by many interlocking spheres; in these cases,
the analytic formulas derived in references quoted above have to be rewritten with some
approximations.

The procedure reported in ref. [9, 10] is that commonly used in solvation programs,
then we shall explicitely report this expression only:

Gcav =
spheres∑

i

Ai
4πR2

i

Gcav(Ri) (8.9)

where we have supposed that the molecular cavity is formed by interlocking spheres,
each having a radius Ri and contributing with a weight related to the portion of its
surface which is exposed to the solvent (Ai); the spherical limit value, Gcav(Ri), is written
as an expansion in powers of RMS , i.e. the radius of the sphere which excludes the
centers of the solvent molecules (sum of the solute and solvent radii, RMS = RM + RS):
Gcav =

∑3
x=0 KxR

x
MS, being the coefficient Kx defined in terms of solvent molecular radius

and numeral density, and solution pressure and temperature.

Tha cavitation energy is calculated using a van der Waals surface (Sw).

8.3.2 Repulsion and dispersion contributions.

What we are calling repulsion contribution could be considered as another part of the
steric contribution described above. However, it is treated together with the dispersion
contribution, although of different physical origin, as their analysis and the consequent
classification follow almost the same path; moreover, also in the classical literature on
molecular interactions, they are often indicated with a single name, the van der Waals
contributions.

The modeling of dispersion and repulsion interactions in solution may be based either
on a discrete molecular description of the liquid or on a continuum dielectric model. Let
us analyze the two approaches separately.

The discrete approach

The discrete approach is generally based on an operator V̂dis−rep written in terms of pair
potentials related to atoms or groups of atoms of the solvent S (here indicated with s)
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and the solute M (here indicated with m):

V̂dis−rep =
∑

m∈M

∑

s∈S
Vms(rms)⇐⇒ Vms(rms) =

∑

n

d
(n)
ms

rnms
(8.10)

the dispersion (n=6,8,10) and the repulsion (n=12) coefficients are taken from the liter-
ature. Often only the term with n = 6 is retained for the dispersion and an alternative
exponential expression, more related to the physical interpretation of the interaction, is
used for the repulsion term: cms exp(−γmsrms).

As for the previous steric term this potential is completely independent from solute
charge distribution, hence its effect is only on the system free energy. This contribution to
the free energy depends on the solvent atoms distribution function outside the cavity: in
the isotropic approximation, this distribution function is constant and equal to the solvent
numerical density ρsolv, so that one can write [11]

Gdis(rep) = ρsolv
∑

s∈S

∑

m∈M

(
tesserae∑

i

aiV
dis(rep)
ism ~rmi · n̂i

)
(8.11)

where the sum on i runs over the tesserae on the cavity surface, ~rmi is the distance
vector between tessera i and solute atom m and n̂i is the unit vector normal to the cavity

surface on tessera i. The terms V
dis(rep)
ism are

V dis
ism = −1

3

dms
r6
mi

(8.12)

V rep
ism = cms exp(−γmsrmi)

[
1

γmsrmi
+

2

(γmsrmi)2
+

2

(γmsrmi)3

]
(8.13)

Since the semi-empirical parameters entering the operator V̂dis−rep are defined in terms
of distances between solute and solvent nuclei,[12] the term Gdis andGrep is best calculated
using a solvent accessible surface: in fact, Sa determines the closest approach of solvent
nuclei to the solute.

The continuum approach.

There exist some models which describe dispersive forces between molecules by quantum
mechanical equations: we don’t review them here, limiting ourselves to cite a recent
extension [13], which permits the calculation of Gdis in the context of continuum solvation
models. Such approach makes use of a suitable operator to be added to Ĥ0 + V̂R: then
the dispersion solute-solvent interaction influences not only the solute energy, but also its
electronic distribution.

In the same paper [13], a quantum mechanical approach for the calculation of the
repulsion energy is also given, in terms of a simple operator proportional to the fraction
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of solute electronic charge lying outside the cavity. Again, this description allows one to
compute the effects of the repulsion interaction both on the solute wave function and on
its energy.

8.3.3 Electrostatic contribution

Let us now analyze the last and most important contribution to the solute-solvent interac-
tions, namely Gel. In this case a deeper attention must be paid to the macroscopic nature
of the continuum medium representing the solvent. Effective Hamiltonian methods have
been derived to describe different kinds of solvents:

1. homogeneous isotropic dielectrics, characterized by a constant scalar permittivity, ε;

2. homogeneous isotropic dielectrics in the presence of other charged solutes (ionic
solutions);

3. homogeneous anisotropic dielectrics, characterized by a constant tensorial permit-
tivity, ε;

4. inhomogeneous dielectrics, characterized by a position dependent permittivity, ε(~r).

Let us consider the most simple system, namely a solute M with nuclear and electronic
charge distribution ρM in a cavity C surrounded by an infinite homogeneous isotropic
dielectric with permittivity ε: the basic relation to be considered is the Poisson equation
with the related boundary conditions, namely





−∆V = 4πρM in C
−ε∆V = 0 outside C
Vi = Ve on Σ(
∂V
∂n

)
i

= ε
(
∂V
∂n

)
e

on Σ

(8.14)

where V is the total electrostatic potential, Σ is the cavity surface, the subscripts e
and i indicate regions outside and inside the cavity, respectively, and n is the (outward)
unit vector perpendicular to the cavity.

The three most widely disseminated approaches used to solve this problem are

1. the apparent surface charge (ASC) methods: PCM [14, 15, 16], COSMO [17, 18],
IEF [19, 20];

2. the multipole expansion (MPE) methods: SCRF [21, 22];

3. the generalized Born approximation (GBA) methods: AMSOL [23].
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In the list above each approach is associated with one or more specific computational
procedures, indicated with their acronyms, which represent the most successful applica-
tions of the class itself. Let us sketch the AMSOL and SCRF procedures briefly, before
reviewing the ASC methods more accurately.

GBA methods (AMSOL).

These methods can be defined as the generalization of the Born model [24]] formulated
for the simple system of a point charge q placed at the center of a void spherical cavity
with radius a (or equivalently a conducting sphere with net charge q and radius a). The
extension of the Born formula giving the electrostatic contribution to solvation free energy
to the by far more complex system of an assembly of point charges in a general cavity can
be written as follows:

GP (Born) = −ε− 1

2ε

q2

a
⇒ GP (GBA) = −ε− 1

2ε

∑

k,k′
qkqk′γkk′ (8.15)

where k, k′ label the atomic centers and γkk′ are Coulomb-type integrals.

The same formalism, with the required changes, has been adopted by Cramer and
Truhlar [25] in a series of methods, now included in the AMSOL code, which belong to
the same class of effective Hamiltonian exploiting continuum description of the solvent we
have defined at the very beginning.

In these methods, called SMx where x denotes the parametrization of the specific sol-
vation method, the partial atomic charges qk to be used in the application of eq.(8.15) are
calculated either from a semiempirical wave function using a zero-overlap Mulliken popu-
lation analysis or, more recently, from a class of charge models which map the Mulliken
derived charges with others reproducing more accurately experimental gas-phase dipole
moments.

In the most recent versions of SMx models, the solvation free energy is calculated as
the sum of two terms:

∆Gsol = ∆GENP +GCDS (8.16)

where the first term ∆GENP contain, on turn, two components: ∆EENP , representing
the change in the internal electronic kinetic and electronic-nuclear coulombic energies of
the solute upon relaxation in solution, and GP which is the free energy of the electric
polarization as derived from the generalized Born approximation. The second term of
eq.(8.16), GCDS , accounts both for the free energy of forming a cavity in the solvent
to make room for the solute, and for the changes in dispersion interactions and solvent
structure that always accompany the solvation process.

Here we don’t consider the CDS term, which is similar to the Gcav term seen above,
and focus on the electrostatic term GENP .
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The whole method is here based on a self-consistent reaction field formalism, in which
the general QM equation to be defined is the following:

F =
∂G

∂P
(8.17)

where F is the Fock matrix, G the already introduced free energy functional, and P the
solute density matrix. For a restricted Hartree-Fock calculation in which core electrons
are not treated explicitly, the free energy functional becomes:

G =
1

2

∑

µ,ν

Pµν(hµν + F(0)
µν ) +

∑

i<j

ZiZj
Rij

− ε− 1

2ε

∑

k,k′
qkqk′γkk′ (8.18)

where µ and ν run over the set of valence atomic orbital functions, and Zi is the nuclear
charge of atom i minus its number of core electrons. Here P is the relaxed (with respect
to solvation) density matrix, F(0) the Fock matrix as defined in vacuo, but formed using
the relaxed density matrix, and the final term accounts for electric polarization using
the generalized Born formalism. Note that the first term still represents the electronic
energy of the solute, including electron-nuclear attraction exactly as in vacuo, although it
will generally be higher in energy than it was the corresponding gas-phase term since the
density matrix has been changed from the gas-phase optimum.

In order to arrive at the relaxed density matrix, one must solve for the orbitals with a
proper Fock matrix as defined by eq.(8.17). Doing so requires to take the partial derivative
of eq.(8.18) with respect to the density matrix. This yields:

F(1)
µν = F(0)

µν −
ε− 1

ε

∑

k,k′
qk

(
∂qk′

∂Pµν

)
γkk′ −

ε− 1

2ε

∑

k,k′
qkqk′

(
∂γkk′

∂Pµν

)
(8.19)

Once more, it is worth noting the differences between the operators, here expressed in
their matrix form, used in the definition of the QM problem and those exploited in the
evaluation of the free energy. In the present formalism, we have that matrix F(1) is required
for solution of the SCF equations, but F(0) is used in the calculation of GENP according
to eq.(8.18).

As a concluding comment, we emphasize, even if it should be already clear from the
derivation above, that by explicitly including the polarization effects in the Fock operator,
the resulting density matrix and converged orbitals are determined self-consistently in the
presence of the solvent. Moreover AMSOL methods are fast, usable in different solvents,
and provided with many options, among which geometry optimization. On the other
hand, one must remember that these methods are strongly dependent on the type of
parametrization used and, more important, that only semiempirical quantum procedures
can be exploited, namely the Austin Model 1 (AM1), or the Parametrized Model 3 (PM3).

MPE methods (SCRF).

This class of methods will be here described almost exclusively in terms of a specific model
known as SCRF method [21, 22], which is without any doubt the most complete MPE
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method.

Like GBA is defined as the generalization of the Born model, the MPE approach can
be seen as an extension of Kirkwood’s model [26]. Here, in fact, the charge distribution of
the solute placed in a cavity surrounded by a continuum dielectric is expanded in a series of
multipoles: in this framework, if with M l

m we indicate the m component of the multipole
of order l written in the spherical tensor formalism, the electrostatic contribution to the
free energy variation becomes:

∆Gel = −1

2

∞∑

l=0

l∑

m=−l
Rml M

m
l (8.20)

in which Rlm is a component of the reaction field, i.e. the corresponding derivatives of order
l of the electrostatic potential created by the continuum polarized under the influence of
the solute.

Within the linear response approximation the various components of the reaction field
can be written in the form:

Rml =
∑

l′,m′
fmm′
l l′ Mm′

l′ (8.21)

in which the coefficients fmm′
l l′ , called the reaction field factors, only depend on the shape

of the cavity and of the dielectric constant of the solvent.

In original Kirkwood’s treatment, using a spherical cavity, these factors have a simple
analytical definition: they are independent from m and are nonzero only when l = l ′. The
analytical treatment is possible also for a spheroid or an ellipsoid. In the general case, the
reaction field factors have to be computed numerically.

The formalism given above for a one-center expansion can be, and actually has been,
straightforwardly generalized to a distributed multipole expansion of N centers; this devel-
opment, as expected, leads to much more rapidly convergent calculations of electrostatic
solvation free energies. However, for simplicity’s sake, in the following we shall continue
to limit the exposition to the one-center expansion formalism.

Once again, in order to pass to the quantum calculation, here limited to the description
of the solute electronic wave function as a single antysimmetrized product of one-electron
molecular spin-orbitals expanded over a finite set of atomic orbitals {χµ}, we have to
minimize the free energy obtaining the modified Fock matrix whose (µν) element is written:

Fµν = F0
µν +

∑

l,m

∑

l′,m′
Mm
l f

mm′
l l′ 〈µ|Sm′l′ |ν〉 (8.22)

in which F0
µν is the corresponding matrix element for the isolated molecule and Sm

′
l′ a

solid spherical harmonic which defines the corresponding multipole tensor element. The
perturbation term of eq.(8.22), because of its nonlinearity, depends on the density matrix
P, as it can be easily shown by writing the explicit definition of each Mm

l term:
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Mm
l =

∑

λ

∑

η

Pλη 〈λ|Sml |η〉 (8.23)

Nevertheless, this dependence does not introduce any special difficulty since the same
characteristic occurs in F0

µν . The iterative scheme in the SCF computation is adapted to
this situation.

This methodology, originally developed for the evaluation of the electrostatic free en-
ergy only and limited to the simple case of a spherical cavity, more recently has been
generalized to cavities of arbitrary shape, and to more complex calculations. It is worth
mentioning that in a recent version of the code it has been introduced the calculation of
analytical derivatives of the free energy [27], and hence the possibility of geometry opti-
mization procedures, and that the same formalism of the reaction field factors allows a
more comprehensive approach in which the dispersion term is added to the electrostatic
term in the derivation of the Hartree-Fock equation [28].

ASC methods (PCM, COSMO, IEF).

In order to derive the working quantities of each of the three methods chosen as represen-
tatives of this class, namely PCM, COSMO and IEF, it is worth going back to system 8.14.
In fact, all these methods solve the system and get the related potential V by exploiting
an integral equation formalism.

Actually, the COSMO model is a little different, since the screening effects in the
dielectric are replaced by the screening effects in a conductor. In other words, the COSMO
method is a solution of the Poisson equation designed for the case of very high ε, and it
takes advantage of the analytic solution for the limit case of a conductor (ε = ∞), for
which the boundary condition reduces to V = 0 on the surface. Anyway, apart from these
differences in the theoretical background, COSMO can be described exactly in the same
way as the other ASC methods, and, in fact, in the following we shall present a single
derivation for all the methods.

The system (8.14) can be solved by a quite standard approach based on Green func-
tions, or by a procedure very recently implemented using operator functions derived from
the theory of integral equations. The former method is appled by PCM and COSMO,
while IEF exploit the latter approach. In both cases, the differential equations of system
8.14 are transformed into integral equations on the surface Σ, that can be easily solved by
standard numerical methods.

In this framework, the solution of system (8.14) is given by the sum of two electrostatic
potentials, one produced by ρM and the other due to a surface charge distribution σ, placed
on the interface, arising from the polarization of the dielectric medium:

V (x) = VM (x) + Vσ(x) =

∫

R3

ρM (y)

|x− y|dy +

∫

Σ

σ(s)

|x− s|ds (8.24)
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where the integral on the first term is taken over the whole space. The surface charge has
to fulfill another condition derived from the Gauss theorem:

Qσ(theo) =

∫

Σ
σ(s)ds = −ε− 1

ε
QM (8.25)

where QM is the total net charge of the solute M . The condition expressed by eq.(8.25)
is clearly a great advantage of the ASC formulation with respect to all the other methods
we have described in the previous subsections, in fact, it gives an easy checking test on
the quality of the model employed.

In ASC approaches exploits the surface Σ is partitioned into tesserae of known area ak,
on which a constant charge density is assumed. In this framework, easily linkable to the
analogous techniques used in the fields of physics and engineering and known as Boundary
Element Methods (BEM), the integral form of Vσ(x) in eq.(8.24) is reduced to a finite sum
running over the point charges representing the surface charge:

Vσ(x) =
K∑

k

qk(sk)

|x− sk|
⇐⇒ qk(sk) = σ(sk)ak (8.26)

where vector sk indicates the representative point of each tessera k, i. e. the point where
σ is evaluated.

Let us consider the three ASC methods in detail, starting from PCM, which for its
longer history can be taken as a reference for the definition of quantities used in the other
methods, too.

PCM In this method, developed in its first form in 1981 [14], but then almost completely
redefined in 1995 [16], the apparent surface charge is expressed by the following classical
electrostatic relation:

σ(s) = −
(
ε− 1

4πε

)
~E(s) · n̂(s) (8.27)

where ~E is the total electric field, i.e. the sum of the contributions due to the solute charge
distribution and to the ASC itself, respectively, and n̂ is the outward normal unit vector
to the cavity at position s.

In the computational practice σ is considered constant over each tessera, so that a set
of apparent point charges qi = aiσ(si) are distributed on the cavity surface. Usually, the
solute charge distribution, ρM , is partitioned into nuclear and electronic contributions, and
the set of linear equations defining the apparent charges, below collected in the column
matrix q is given by:

Dq = −(Ee
M + EN

M ) (8.28)

where D is a square matrix, with size equal to the number of surface tesserae, with elements

Dii = 4π
ai

[ε/(ε− 1)− (1− ξi)/2]

Dij = [(si − sj) · n(si)/|si − sj|3]
(8.29)
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The diagonal term of D, which collects the contribution of the reaction field induced by
the charge placed on tessera i on itself, is derived by the Gauss formula for an infinite
charged plane with a correction term ξi accounting for the curvature of the convex tessera.
The vectors Ee

M and EN
M collect the normal components of the electric field coming from

solute electrons and nuclei, respectively (the subscript M indicates that we are considering
the field generated by the solute only).

The column matrices on the right hand side of eq. 8.28 collect the values of the normal
electric field due to solute nuclei and solute electrons, respectively.

Also apparent charges can be partitioned into two components defined as electron- and
nuclei-induced, respectively:

q = qe + qN = −D−1
(
Ee
M + EN

M

)
(8.30)

Thus the solute-solvent interaction energy, UMS may be divided into four different contri-
butions:

UMS =

∫ ∫
ρ(x)σ(s)

|x− s| dxds = Uee + UeN + UNe + UNN (8.31)

where the first subscript refers to the component of the solute charge and the second to
that of the ASC.

Limiting for simplicity to closed shell Hartree-Fock calculations, the first three contri-
butions to the interaction energy of eq.(8.31) (the last term UNN is a constant dependent
only on the positions and the charges of solute nuclei) can be expressed in terms of three
matrices, X(P), j, and y, collecting solute-solvent interaction terms, so that:





Uee = trPX(P)
UeN = trPj
UNe = trPy

(8.32)

where P is the solute one electron density matrix on a finite atomic basis set {χ}. In
particular, j is the matrix collecting the interactions between each solute electronic el-
ementary charge distribution χµχν and the nuclei-induced apparent charges qN , y the
matrix related to the interaction between solute nuclear charges and the electron-induced
apparent charges qe, and X(P) that defining the interactions between solute electrons and
the apparent charges qe [16].

The expression for the corresponding electrostatic component of the free energy can
be easily written as:

Gel = trP
[
h + 1

2(j + y)
]

+ 1
2 trP [G(P) + X(P)] +

[
1
2UNN + VNN

]

= trPh′ + 1
2 trPG′(P) + V ′NN

(8.33)

where h, G(P) and VNN are the elements used in standard calculations in vacuo, collecting
one-, two-electron integrals, and nuclear repulsion, respectively. Here, the prime on the
matrices in the right hand expression, which is formally identical to that of E 0 for the
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system in vacuo, stresses that the corresponding term takes into account the contribution
due to the solvent.

By combining the stationary condition δGel = 0 for an arbitrary variation of the
molecular orbital coefficients C, with the auxiliary conditions of orthonormality, one easily
arrives to the following HF-like equation:

F′C =
[
h′ + G′(P)

]
C = SCε (8.34)

where, once again, the prime on the Fock matrix indicates the presence of terms due to the
solvent. Here S, and ε represent the standard overlap and one-electron orbital matrices,
exactly as in vacuo.

Eq.(8.34) can be solved with the same iterative procedure of the problem in vacuo; the
only difference introduced by the presence of the continuum dielectric is that, at each SCF
cycle, one has to simultaneously solve the standard quantum mechanical problem and the
additional electrostatic problem of the evaluation of the interaction matrices, and hence
of the apparent charges. The latter are obtained from eq.(8.30) through a self-consistent
technique which has to be nested to that determining the solute wave function; as a con-
sequence, in each cycle solute and solvent distribution charges are mutually equilibrated.

However, we have to stress that in the computational practice many numerical prob-
lems can disturb the calculation; the most important is that Gauss’ condition on the total
apparent charge (see eq.8.25) is generally not fulfilled. There are two main reasons for this
important discrepancy: a numerical one, due to the discretization of the apparent surface
charge distribution into a finite set of point charges, and a physical one, related to the
solute electronic charge spreading out of the cavity. The numerical error affects both qN

and qe (more or less at the same extent), while the physical error is referred to qe only.

In general, one needs a process of renormalization of the apparent charges such as to
bring the corrected q̄xk to satisfy the condition:

K∑

k

q̄xk = −ε− 1

ε
QxM (8.35)

where x stands for N or e. Since the first paper on PCM, this problem has been pointed
out and many techniques of renormalization, also called compensation procedures, have
been given [14, 16].

The simplest compensation corrects the two sets of charges through two separate fac-
tors f e and fN , constant in each set, such that q̄xk = fxqxk for all k.

In a more accurate treatment, the qN ’s are corrected by the same fN as in the preceding
method, while the qe’s are first multiplied by fN (in the hypothesis that the numerical
error is equal for the two sets of charges), and then the remaining error (mainly due to
escaped electrons) is corrected by an additional apparent charge. Such additional charge
is proportional to the solute electron density on the tesserae: in such a way, the corrections
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are greater in those parts of the cavity where the flux of electronic tails through the surface
is more pronounced.

A third, more refined compensation procedure has been recently proposed [29]: the
factor fN is used as in the previous method, then the escaped electrons are compensed
by means of an additional ”effective” apparent charge, σeff . In this case σeff is treated
exactly as the usual polarization charge, i. e. it is partitioned into finite point charges
and used to modify the Hamiltonian.

More details about compensation can be found in ref. [30].

COSMO This method, originally proposed [17, 18] in a form quite different from PCM,
has been recently recast [31] in order to exploit the same features elaborated for PCM.

As already said, COSMO is based on a screening conductor theory. Screening in
conductors can be handled more easily than in dielectric media; in our framework, i. e. a
solute M placed in a cavity inside the conductor, the boundary condition to be fulfilled is
that the total electrostatic potential V cancels out on the cavity surface

V (s) = VM (s) + Vσ(s) = VM (s) +
K∑

k

qk(sk)

|s− sk|
= 0 ∀s ∈ Σ (8.36)

where we have exploited a partition of the cavity surface into tesserae which allows to
discretize the surface charge distribution σ into a set of K point charges.

Following the strategy already used to get eq. (8.28) in the PCM method, from
eq.(8.36) we can write the basic system giving the COSMO apparent charges in the fol-
lowing matrix formalism:

BQ = −VM (8.37)

where the column matrix VM contains the solute electrostatic potential on each tessera,
and the elements of the square matrix B are:

Bii = 1.07ai
√

4π/ai
Bij = aj/|si − sj| (8.38)

with quantities having the same meaning seen above. The numerical factor 1.07 is
derived from the simple case of a homogeneously charged sphere [17].

In equation 8.37 we used Q to hightlight that this apparent charges are obtained for
a conductor, i. e. for ε = ∞; if the COSMO model is used to simulate a solvent with
dielectric constant ε, these apparent charges have to be scaled so that their sum obeys the
Gauss law (see eq.8.25): this can be effectively accomplished by multiplying each charge
by the factor (ε − 1)/ε. By exploiting the already defined partition into electrons and
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nuclei-induced apparent charges, we can write:

q = qe + qN = −ε− 1

ε
B−1(Ve

M + VN
M ) (8.39)

In a finite basis matrix formulation, the expression of the free energy functional from
which one derives the quantum mechanical system to be solved is identical to that pre-
sented for the PCM model. We do not repeat here the whole derivation, but we only
stress that also here the solvent reaction field is included directly in the SCF procedure,
and hence the solute electron density distribution and the solvent reaction field are con-
verged simultaneously.

Also COSMO is affected by the numerical and escaped electrons errors illustrated
for PCM, however, it can be shown that the conductor approach is less sensitive to the
problem of the escaped charge than the dielectric one. As a matter of fact, the error on
the electrons-induced set of apparent charges generally reduces of an order of magnitude
with respect to that found in PCM.

The same compensation procedures defined for PCM, even if specifically designed for
a dielectric-like model, could be exploited also in the COSMO algorithm; moreover, a
further technique explicitly thought for the conductor model has been recently presented
[32]. Anyway, a large number of test calculations have shown that COSMO results are
effectively corrected both for numerical and for physical errors by simply multiplying by
constant factors (first procedure illustrated for PCM), even for charged solutes.

As a final note we add that COSMO method is rightly defined, and indeed it well
reproduces solute energies and properties, only for highly polar solvents like water, for
which the difference between the two values of (1-1/ε) obtained with ε = 78.5 and ε =∞
is only 1.3%. Nevertheless, sometimes COSMO is used also for the treatment of nonpolar
solvents with ε ≈ 2, but in these cases it needs approximations which are physically by far
less founded than those defined for the dielectric model, and not always easily acceptable.

IEF This method of very recent implementation [19, 20] needs few further comments
on the problem of the operator formalism used to solve Poisson equation (8.14). In the
first part of this section we underlined the fact that, while both PCM and COSMO ex-
ploit a mathematical approach based on Green functions, this new method makes use of
other operators, well-known in the theory of integral equations [33] but not so diffused
in the theoretical treatment of chemical problems. We do not report here their formal
derivations, as this would be too long and almost out the scope of this chapter; what we
want to stress is that this new formalism leads to two very important consequences. From
one hand, it allows to treat in a single approach dielectrics of very different nature (i.e.
standard isotropic liquids, anisotropic media like liquid crystals and solid matrices, and
ionic solutions), and, on the other hand, it includes the two previous methods as particu-
lar cases: namely, the PCM can be derived from the standard isotropic description, and
COSMO in the limit of an infinite dielectric constant.
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Starting from suitable operators, and omitting all the complex derivation presented
in refs. [19, 20], one obtains that the polarization point charges are determined by the
matrix equation

Cq = −g (8.40)

q is the vector of the polarization charges on tesserae, C is a matrix defined as

C = (I/2−De) SiA
−1 + Se

(
I/2 + D†i

)
A−1 (8.41)

where I is the unit matrix, A is a diagonal matrix collecting tesserae areas and
De, Di, Se and Si depend on the position of tesserae, on the solvent dielectric con-
stant and, in the case of ionic solutions, on the ionic strength (their explicit expressions
are given in ref. [20]). Lastly, the elements of the g vector are combinations of the elec-
trostatic potential (VM ) and of the normal component of the electric field (EM ) exerted
exerted by the solute on each tessera (see ref. [20] for more details):

g = (A/2−De) VM − SeEM (8.42)

As usual, we can partition the apparent charges:

q = qe + qN = −C−1(ge + gN ) (8.43)

Once again, the strategy and the tools used to derive the quantum mechanical problem
are completely equivalent to that described for PCM and COSMO. In these terms, it is
possible to perform an iterative calculation of the IEF formally equal to the standard
SCF procedure in vacuo, leading to self-consistent polarization charges and solute wave
function.

It is worth noting that IEF, exploiting both electrostatic potential and electric field,
has a hybrid nature and it is more similar to PCM for some aspects and more similar to
COSMO for others.

In particular, regarding the important problem of the escaped charge effects, the be-
havior shown by IEF is almost identical to that already seen in COSMO. Numerically,
this means that the errors on IEF electrons-induced apparent charges are much smaller
than the PCM ones and, at least for standard calculations on neutral solutes, they can be
safely neglected without affecting the final results in a quantitative extent.

8.4 Free energy derivatives

Besides the “direct” effects (i. e. those related to the polarization of the solute wave
function at the geometry optimized in vacuo) described in the previous sections, very often
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one cannot neglect the geometry relaxation induced by the solvent (sometimes referred to
as “indirect” solvent effects).

In the study of chemical reactions in vacuo it is compulsory to locate the critical points
(minima and saddle points) on the potential energy hypersurface, and the reaction mech-
anisms can be characterized by following a suitable reaction coordinate. The analytical
calculation of the energy gradients with respect to the nuclear coordinates and of the
Hessian matrix are necessary to find and characterize the critical points and to define the
intrinsic reaction coordinate.

The same is true for systems in solution, just substituting the potential energy with the
free energy: presently, PCM-like methods have been implemented to compute analytical
gradients, while second derivatives can be calculated by numerical methods only. With
these procedures minima and saddle points in solution can be effectively located.

Recalling eq. 8.5, the derivative of the free energy with respect to the nuclear coordi-
nate α can be written

(G)α =
(
Gel
)α

+
(
Gster

)α
+
(
Gdis

)α
+ (Grep)α (8.44)

To compute the various contributions in eq. 8.44 accurately, it is useful to know how
the cavity elements change in size and shape when a solute atom moves. In other words
one should compute the derivatives of tesserae areas and positions with respect to nuclear
coordinates: at our knowledge, PCM-like methods are the only ones which allow such a
calculation [5].

Once these “geometrical” derivatives are known, the gradients of non electrostatic
terms are easily computed [5, 34] (see eqs. 8.9 and 8.11):

(Gcav)α =
spheres∑

i

(Ai)
α

4πR2
i

Gcav(Ri) (8.45)

(
Gdis(rep)

)α
= ρsolv

∑

s∈S

∑

m∈M

tesserae∑

i

[
(ai)

α V
dis(rep)
ism ~rmi · n̂i

+ ai
(
V
dis(rep)
ism

)α
~rmi · n̂i + aiV

dis(rep)
ism (~rmi · n̂i)α

]
(8.46)

where the variables have been illustrated above. Thus the gradient of the cavitation

energy depends on geometrical derivatives only, and also
(
Gdis(rep)

)α
is heavily dependent

on these quantities, though
(
V
dis(rep)
i

)α
and (~rmi · n̂i)α also depend on the derivatives of

nuclear positions. Anyway, all the non electrostatic derivatives need a careful evaluation
of geometrical derivatives to be correctly computed.
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(
Gel
)α

is very often the most important contribution to the free energy gradient in

solution: recalling eqs. 8.4 and 8.33 one has
(
Gel
)α

=
(〈

Ψ
∣∣∣Ĥ0

∣∣∣Ψ
〉)α

+ (VNN )α − trSα(PF′P)

+
1

2
trP (jα + yα) +

1

2
trPXα(P) +

1

2
(UNN )α (8.47)

where
(〈

Ψ
∣∣∣Ĥ0

∣∣∣Ψ
〉)α

+ (VNN )α− trSα(PF′P) is the usual energy gradient calculated

as in vacuo (but using the wave function and the Fock matrix perturbed by the solvent).
The solvent-dependent terms can be rewritten

1

2
trP (jα + yα) +

1

2
trPXα(P) +

1

2
(UNN )α =

=
tesserae∑

i

(qi)
α Vi +

tesserae∑

i

qi (Vi)
α = (8.48)

=
tesserae∑

i

(qei )
α V N

i +
tesserae∑

i

qNi (V e
i )α +

tesserae∑

i

(
qNi

)α
V e
i +

tesserae∑

i

qei

(
V N
i

)α

+
tesserae∑

i

(qei )
α V e

i +
tesserae∑

i

qei (V e
i )α +

tesserae∑

i

(
qNi

)α
V N
i +

tesserae∑

i

qNi

(
V N
i

)α
(8.49)

In the formulation 8.49 we have exploited the partition of solvent charges and of solute
potential into nuclear and electronic parts. This is the form used in actual calculations:
the required derivatives are combinations of the geometrical derivatives mentioned above

and of potetntial and electric field derivatives calculated as in vacuo. The
(
Gel
)α

gradients

can also be calculated neglecting the geometrical derivatives, i. e. at “fixed cavity”: this
has proven to be an effective approximation, sometimes useful to avoid some numerical
problems, however in most cases the complete, “mobile cavity” derivatives are preferable.

It is worth noting that the boundary conditions of the COSMO model allows one to
simplify eq. 8.49, avoiding the explicit calculation of the solvation charges derivatives,
as illustrated in refs. [17], [18] and [31]. This feature makes COSMO a particularly
effective model in geometry optimizations. On the other hand, an alternative and very
rapid procedure to compute free energy derivatives in the IEF-PCM framework is presently
under elaboration.

Once free energy gradients have been determined, they can be used in usual packages
for geometry optimizations: the PCM-like procedures implemented in GAUSSIAN98 and
GAUSSIAN03 and GAMESS allow geometry optimizations, as well as second derivatives
and force constant calculations nearly as effective as in vacuo. only be obtained numer-
ically, with a considerable computational burden: work is in progress to implement the
analytical calculation of the Hessian matrix in PCM-like methods.

Lastly, we note that, even though our analysis has been exclusively devoted to ASC
methods [35, 36], this does not mean that the other continuum solvation methods cannot



206

give the same kind of calculations; indeed analytical expressions for these derivatives are
available, for example, for the MPE-SCRF [27] and for the AMSOL methods. The latter,
though limited to semi-empirical calculations, allows very effective geometry optimizations
in solution, while the former is extended to ab initio calculations but it often suffers from
convergency problems.

b) Numerical applications

In principle, solvation methods based on effective Hamiltonian approaches allow all the
analyses and the manipulations of the solute wave functions that are possible in gas phase.
Presently, the most advanced computational procedures, based on the methods illustrated
in the preceding chapter, can provide for isotropic solutions:

• the solute molecular free energy, partitioned into electrostatic and non electrostatic
terms: the ab initio electrostatic contributions can be calculated for closed- and
open-shell systems at Hartree-Fock (HF) and Density Functional Theory (DFT)
levels, and at some post-HF levels (i.e. MP2, MP4, Coupled Cluster, CI extended
to single and double excitations, CAS-SCF);

• the energy gradients with respect to nuclear coordinates, to be used for geometry
optimizations in condensed phase, at HF and DFT levels;

• the (numerical) evaluation of harmonic force constants at HF and DFT levels;

• the calculation of first order electronic properties (dipole moments, Mulliken or Bader
atomic charges, spin densities and so on) at the same level as the energies (provided
the electronic density is available);

• the calculation of static and dynamical electronic polarizability and hyperpolariz-
abilities, up to the third order, at HF level for closed-shell systems.

The above quantities can be used to study the structure and the reactivity of chemical
systems in solution, following the same procedures adopted for isolated molecules. Clearly,
the accuracy of the results depend on a number of factors (e.g. the shape of the cavity,
the renormalization of the polarization charges, and so on): in the ASC framework (PCM,
COSMO and IEF approaches) a good experience exists about these and other computa-
tional aspects and, as we shall see, the procedure is particularly flexible and stable.

In the following some examples are reported, using the most advanced implementa-
tions of PCM, COSMO and IEF methods (and also mentioning some results obtained by
SCRF and AMSOL procedures). The calculations have been performed by the routines
implemented by our group in Gaussian94 [37, 38]: we recall that some of the above men-
tioned quantities can be calculated also by the PCM and IEF routines implemented in
Gamess [39] (in particular, electrical polarizability and hyperpolarizabilities in solution
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can be computed only by Gamess). DFT calculations have been performed using the
mixed functional proposed by Becke, Lee, Yang and Parr (and referred to as B3LYP)
[40, 41]; the basis sets are the popular 6-31G [42], sometimes supplemented by diffuse and
polarization functions.

PCM-type methods, as well as the most recent versions of SCRF, are based on cav-
ities mimicking the actual molecular shape: usually the well known GEPOL procedure,
described in the preceding chapter, is used to build the cavities. As reported in section 8.2
of previous Chapter an alternative cavity definition (called DEFPOL) has been recently
proposed.

One of the most important energetic quantity one can get from solvation methods is
the solvation free energy

∆Gsol = G−
〈

Ψ0|Ĥ0|Ψ0
〉

(8.50)

namely the difference between the solute free energy and the energy of the isolated
molecule calculated at the same level (both values are here computed without taking into
account entropic terms). In table 1 we report some examples of ∆Gsol calculated with
different solvation models: from the comparison with the corresponding experimental data
[43, 44], one can estimate the reliability of this kind of calculations.

Table 1. ∆Gsol (kcal/mol) calculated with some effective Ha-
miltonian solvation models, compared to experimental results.
Model of solvation PCM SCRF AMSOL
Level of calculation HF HF semiempirical Exp.
Basis set 6-31G* 6-31G*
Kind of GEPOL with ellipsoidal interlocking
cavity Pauling’s radii (a) spheres

CH4 1.52 0.84 2.0
CH3OH -4.73 -4.88 -5.1
CH3CH2OH -3.30 -4.07 -5.0
CH3COOH -7.50 -6.72 -6.6 -6.7
CH3CONH2 -10.21 -9.71 -9.7
CH3COCH3 -3.50 -4.3 -3.8
CH3CHO -4.59 -3.44 -3.5
CH3NH2 -3.13 -4.87 -4.6
CH3CN -5.66 -3.97 -3.9
H3O+ -94.3 -109.4 -104
CH3OH+

2 -77.0 -89.7 -85
(CH3)2COH+ -60.0 -65.7 -64
CH3NH+

3 -74.0 -78.4 -70
OH− -97.8 -111.8 -106
Ph-O− -63.5 -68.3 -72

(a) non electrostatic contributions computed with GEPOL-like
cavities and parameterized to fit experimental data in ref.[45].
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Table 2. ∆Gsol (kcal/mol) calculated by PCM at HF level (basis set:
6-31G* for neutrals, 6-31+G* for ions) with UATM cavity model.

Calculated(a) Exp. Calculated(a) Exp.
∆Gsol ∆Gsol ∆Gsol ∆Gsol

CH4 1.86 2.0 H3O+ -105.3 -104
H2O -6.28 -6.3 CH3OH+

2 -87.4 -85
CH3OH -4.99 -5.1 (CH3)2COH+ -65.2 -64
(CH2OH)2 -9.80 -9.6 NH+

4 -79.8 -79
NH3 -4.34 -4.3 CH3NH+

3 -70.3 -70
CH3NH2 -4.57 -4.6 Ph-NH+

3 -64.1 -66
Ph-NH2 -4.69 -4.9 CH3SH+

2 -75.6 -74
CH3COOH -7.10 -6.7 OH− -108.1 -106
CH3CONH2 -9.40 -9.7 CH3O− -94.3 -95
Ph-NO2 -3.97 -4.1 CH3COO− -78.1 -77
pyridine -4.79 -4.7 Ph-O− -71.3 -72
NH2-NH2 -9.65 -9.3 PH−2 -65.9 -65

(a) renormalization method ICOMP=4 (see below).

The PCM average error can be reduced by one order of magnitude by employing more
refined definition of cavities, as shown in table 2.

The UATM (United Atom Topological Model) cavities are based on the GEPOL pro-
cedure, the main difference being that hydrogen atoms are always included in the same
sphere as the heavy atom they are bonded to. The radius of each atomic or group sphere is
defined in terms of the molecular topology: with a limited number of parameters, UATM
cavities allow one to calculate ∆Gsol with chemical accuracy for a wide range of compounds
(on a set of 43 neutral solutes, the average error is lower than 0.2 kcal/mol, whereas on
27 ions an average error of about 1 kcal/mol is found) [46].

The dependence of the results on the charge renormalization in the framework of PCM,
COSMO and IEF methods can be judged from the results shown in table 3. Notice that a
deep analysis of the numerical errors due to the discretization and to the escaped electronic
tails has been performed for ASC methods (PCM, COSMO, IEF) only. In table 3 the three
different renormalization procedures introduced in the previous chapter (see section 8.3.3)
have been indicated as follows. ICOMP=0 means that no normalization has been applied
(this option is effective for COSMO and IEF models only, whereas with PCM it gives
unreliable results); ICOMP=2 means that each charge has been multiplied by the same
factor fx in order to bring the total polarization charge to the value predicted by Gauss’
law. ICOMP=3 indicates that the charges have been renormalized tessera by tessera with
a correction proportional to the solute electronic density; lastly, ICOMP=4 (active for
PCM calculations only) corresponds to the most complex method, taking into account
the escaped charge by an effective polarization charge spread on the cavity surface (see
refs. [29] and [30] for a more comprehensive review of normalization methods adopted in
PCM).
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Table 3. ∆Gsol (kcal/mol) computed by PCM, COSMO and IEF solvation models with
different renormalizations (ICOMP) of the solvation charges .

PCM COSMO IEF Exp.
2 3 4 0 2 3 0 2 3

H2O -6.53 -6.38 -6.29 -6.26 -6.26 -6.36 -6.20 -6.20 -6.19 -6.3
CH3OH -5.32 -5.10 -5.99 -5.04 -5.05 -5.12 -4.99 -5.00 -4.98 -5.1
CH3NH2 -5.04 -4.81 -4.57 -4.69 -4.68 -4.75 -4.65 -4.64 -4.62 -4.6
pyridine -5.23 -5.35 -4.78 -4.66 -4.68 -4.74 -4.62 -4.63 -4.74 -4.7
CH3OH+

2 -89.3 -87.9 -87.4 -88.8 -88.6 -89.3 -88.6 -88.4 -88.3 -85
OH− -111.6 -109.8 -108.1 -104.2 -111.0 -110.7 -104.5 -110.8 -110.5 -106
Ph-S− -58.9 -63.9 -65.4 -62.7 -64.9 -65.1 -92.9 -64.8 -65.2 -67

Is is noteworthy that COSMO and IEF models need a simpler normalization procedure
(say ICOMP=2) to give results of accuracy comparable to that of PCM with the most
advanced procedure (namely ICOMP=4).

Though multipole expansion methods like SCRF are based on an approximate descrip-
tion of the electrostatic potential, their major advantage is that the solvent effects can be
calculated very quickly, mainly with simple spherical or ellipsoidal cavities. On the other
hand, in many cases it is necessary to reach high multipole orders to approach convergence.

Such convergence problems are avoided by ASC methods: furthermore, the most recent
implementations of PCM, COSMO and IEF in Gaussian94 have reached a noticeable
degree of computational efficiency.

From the comparison of the CPU time needed for some HF calculations in vacuo and
in solution (by PCM and COSMO), it is clear that a SCF calculation taking into account
solvent effects requires less than twice the time needed for an isolated molecule. Notice
that in most tests, the SCF in solution is composed by two successive calculations, the
first referred to the isolated solute, the second taking into account the solvent effects: this
way, one obtains a number of information with a single run: however, it is possible to
perform the calculation in the solvent directly, saving more time.

When free energy gradients are calculated in solution, one generally finds that the
electrostatic contribution (Gα

el, see eqs. 8.44 and 8.47) is the dominant one. For example,
in table 4 we report the various contributions to the largest gradient components for some
molecules in aqueous solution (notice that the geometry of all these systems had previously
been optimized in gas phase, so that all the gradient components would be lower than
0.00045 a. u. in the absence of the solvent). Of course, in the case of large, flexible and
non polar compounds the contributions on non electrostatic (mainly cavitation) energy
gradients can become crucial.
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Table 4. Electrostatic and non electrostatic contributions (a. u.) to free energy
gradients. All molecules at the geometries optimized in vacuo at the same level.

Level of Radii Largest(a) Largest(a) Largest(a) Largest(a)

calculation ∆Gαel (a.u.) ∆Gαcav ∆Gαdis ∆Gαrep
H2O HF/6-31G* Pauling 0.01518 0.00096 0.00030 0.00008
H3O+ HF/6-31G* Pauling 0.09976 0.00091 0.00039 0.00007
OH− HF/6-31+G* Pauling 0.04471 0.00095 0.00027 0.00008
CH3OH HF/6-31G* UATM 0.02175 0.00107 0.00087 0.00017
CH3O− HF/6-31+G* UATM 0.09096 0.00094 0.00113 0.00175
CH3CONH2 HF/6-31G* UATM 0.02284 0.00111 0.00104 0.00158
CH3COOH B3LYP/6-31G** UATM 0.03306 0.00113 0.00087 0.00019

(a) In the optimization algorithm implemented in Gaussian94 the standard convergence
threshold on gradients is 0.00045 a. u.

The availability of reliable energy gradients is going to make the geometry optimization
of systems in solution as easy and fast as for isolated molecules.

Another interesting result is reported in table 5, where we list the geometrical param-
eters of two conformers of the glycine radical zwitterion (+H3N-ĊH-COO−):

optimized in vacuo and in water by PCM: it is noteworthy that the conformer 2, with an
aminic hydrogen in cis position with respect to an oxygen, is not a stationary point in
vacuo, whereas a minimum in the free energy hypersurface appears in solution.

Table 5. Geometrical parameters (bond lengths in Å
and valence angles in degrees) for two conformers of
the zwitterionic form of glycine radical. Calculations

at B3LYP/6-31+G** level.

Conformer 1 Conformer 1 Conformer 2
in vacuo in water in water

NC 1.486 1.485 1.451
CC 1.500 1.481 1.482
COc 1.271 1.268 1.272
COt 1.245 1.264 1.262
CH 1.084 1.082 1.081
NH1 1.023 1.026 1.037
NH2 1.031 1.029 1.029
NCC 110.87 118.13 115.91
CCOc 111.44 116.11 115.11
CCOt 115.78 115.80 116.76
CCH 132.11 126.26 126.58
CNH1 115.19 111.62 106.03
CNH2 107.31 111.81 112.83
H2NCC 54.42 59.00 119.68
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Also other methods referenced in the preceding chapter are able to perform geome-
try optimizations in solution: for example, in the semi classical framework, the AMSOL
procedure has been parameterized for a great variety of compounds and it can calcu-
late energy derivatives very quickly. Besides PCM-like methods, another widely used ab
initio solvent model providing good geometry optimizations is SCRF; moreover, other
implementations of COSMO, different from ours, have been proposed for the ab initio
optimizations in solution. Unlike the other ab initio models, the PCM and the COSMO
procedures implemented by our groups can calculate energy gradients taking into account
the non electrostatic terms, and also the effects due to the deformation of the cavity. As
for single point calculations, the most effective implementations require a computational
effort only slightly greater in solution than in vacuo

According to the Transition State Theory, a chemical reaction can be represented on
the suitable energy hypersurface as the minimum energy path connecting two minima
(reactants and products) through a first order saddle point (transition state). Then, a
further step in the analysis of energy hypersurfaces is the location of saddle points, that can
be accomplished in solution with the help of the methods elaborated for isolated systems,
though the convergence of such search algorithms sometimes raises some problems when
the solvent effects are taken into account.

An example of transition state optimization is shown in table 6, where we report some
data for the interconversion between formamide and formamidinic acid assisted by one
water molecule:

Table 6. Geometries, bond lengths in Å and valence angles in degrees,
and energy differences (kcal/mol) of minima and transition state for the

interconversion formamide → formamidinic acid assisted by one water mo-
lecule. Calculations in vacuo and in solution at B3LYP/6-31G** level.

Formamide Transition Formamidinic
state acid

in vacuo in water in vacuo in water in vacuo in water
Energy 0.0 0.0 19.4 20.8 10.1 12.4
NH1 1.022 1.017 1.318 1.335 2.434 1.930
NH2 1.007 1.010 1.012 1.011 1.017 1.017
NC 1.348 1.333 1.308 1.303 1.280 1.276
CO 1.230 1.243 1.284 1.295 1.328 1.338
CH 1.105 1.100 1.097 1.094 1.095 1.092
OHw 1.899 1.852 1.220 1.273 0.999 0.996
OOw 2.800 2.794 2.397 2.401 2.611 2.708
OwHw 0.966 0.967 0.967 0.970 0.966 0.969
OwH1 1.975 2.075 1.192 1.175 0.988 0.986
H1NC 117.6 118.5 105.3 105.9 55.6 104.4
H2NC 121.0 120.8 116.6 116.1 111.4 109.2
OCN 124.9 124.3 122.0 121.6 123.5 123.4
HCN 113.8 114.4 121.3 122.3 125.2 125.1
HwOC 105.6 105.2 103.2 102.3 111.3 107.9
HwOwHw 104.3 107.2 109.5 107.1 104.9 103.8
HwOwHwO 112.0 101.0 108.2 106.4 109.8 104.3
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The knowledge of minima and saddle points geometry and energy allows one to deter-
mine activation energies and to get many insights about reaction mechanisms: the next
step would be the calculation of reaction coordinates (for example the Intrinsic Reaction
Coordinate, IRC, proposed by Fukui). However, the determination of IRC’s for com-
plex systems requires a good estimate of the Hessian matrix, at least in the saddle point:
presently the PCM-type methods we have illustrated above do not provide analytical en-
ergy second derivatives in solution, and numerical estimates are not accurate enough for
this scope. Other approaches, mainly the SCRF, are able to calculate Hessian matrices in
solution: however, many convergence problems are encountered, so that one can say that
more work is still needed to describe chemical reactions in solution at the same level as in
vacuo.

On the other hand, the numerical evaluation of free energy second derivatives is ac-
curate enough to calculate vibrational frequencies in solution (in this case attention must
be paid to the shape of the cavity: for example, united atom models seem less accurate
than descriptions with a sphere around each atom). In table 7 we report harmonic wave
numbers and IR intensities calculated for formamide in water. Inclusion of solvent ef-
fects substantially improves the agreement with the experiments: of course the numerical
derivation is cumbersome, and the calculation in solution is much longer than in vacuo.

Table 7. Harmonic wave numbers (cm−1) and IR intensities (km/mol) for
formamide calculated in vacuo and in water (by PCM) at B3LYP/6-31G*

level.

Vibrational Wave numbers IR intensities
mode in vacuo in water exp. in vacuo in water exp.

NH2 inversion 162.1 365.6 303 249 345 very strong
NCO bend 562.8 581.2 564 12 26 medium
NH2 twist 649.6 681.8 682 21 16 medium
CH out of plane 1047.2 1070.5 1047 0 1 weak
NH2 wagging 1054.4 1070.7 1185 3 5 weak
CN stretch 1275.5 1301.6 1261 95 111 strong
CH in plane 1432.5 1405.1 1400 54 30 medium
NH2 bend 1620.8 1588.1 1579 68 119 strong
CO stretch 1836.0 1746.2 1740 352 651 ultra strong
CH stretch 2949.2 3012.0 2884 110 89 medium
NH2 symm. str. 3596.6 3574.8 3427 314 123 medium
NH2 asymm. str. 3741.2 3713.8 3548 37 130 medium
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Table 8. Mulliken group charges (a.u.) calculated in vacuo
and in two solvents at HF/6-31G* level.

Charge on In vacuo In chloroform In water
fragment

CH3OH −OH -0.288 -0.301 -0.306
CH3CH2OH −OH -0.296 -0.308 -0.313
CH3NH2 −NH2 -0.168 -0.175 -0.178
Ph-OH −OH -0.300 -0.297 -0.294
Ph-NH2 −NH2 -0.206 -0.173 -0.159
Ph-SH −SH +0.112 +0.108 +0.108

As said at the beginning of this chapter, effective Hamiltonian solvation methods pro-
duce solute wave functions (expressed as density matrices on atomic bases) that can be
analyzed exactly as the corresponding wave functions for isolated molecules. For exam-
ple Mulliken population analysis, widely used to get a rough but useful description of
electronic distributions, can be applied to molecular solutes, as shown e.g. in table 8.
Of course, more refined analyses can be performed, too: for example, Bader’s procedure
can be used to partition the electronic properties (like the charge) between atoms, at a
computational cost exactly equal in vacuo and in solution.

Dipole moments can be computed in solution as well as in vacuo: in table 9 we report
the dependence of this quantity on the calculation level for some test molecules.

Table 9. Dipole moment (Debye) calculated in
vacuo and in water (PCM) at different calculation
levels (basis set: 6-31G*).

H2O CH3OH
in vacuo in water in vacuo in water

HF 2.186 2.479 1.857 2.210

MP2(a) 2.151 2.451 1.762 2.132

MP4(a) 2.135 2.435 1.764 2.132

QCISD(a) 2.143 2.441 1.791 2.156

CCSD(a) 2.140 2.438 1.777 2.143
B3LYP 2.050 2.345 1.645 1.980

(a) Using solvation charges determined at HF level.

As said in Chapter 1, one usually calls “direct” solvent effects those related to the polar-
ization of the solute wave function due to the solvent reaction field, keeping the geometry
optimized in vacuo, while the modifications due to the geometry relaxation induced by the
solvent are referred toas “indirect” effects. It is noteworthy that the procedures presented
above are able to separate direct and indirect solvent effects on molecular energies and
structures.

A final note: this presentation was written some time ago. In the meanwhile some
important aspects of the PCM model as well as many implementative issues have been



214

changed and updated: the reader can find an illustration of the most recent developments
in refs. [47], [48] and references therein.



Bibliography

[1] J.B. Foresman, T.A. Keith, K.B. Wiberg, J. Snoonian, M.J. Frisch, J. Phys. Chem.
100, 16098 (1996).

[2] J.L. Pascual-Ahuir, E. Silla, J. Tomasi and R. Bonaccorsi, J. Comp. Chem. 8, 778
(1987).

[3] R. Cammi, M. Cossi, B. Mennucci, C.S. Pomelli and J. Tomasi, Int. J. Quantum
Chem. 60, 1165 (1996).

[4] B. Lee and F.M. Richards, J. Mol. Biol. 55, 379 (1971).

[5] M. Cossi, M. Mennucci and R. Cammi, J. Comp. Chem. 17, 57 (1996).

[6] H.H. Uhlig, J. Phys. Chem. 41, 1215 (1937).

[7] O. Sinanoglu, J. Chem. Phys. 75, 463 (1981).

[8] V. Gogonea and E. Osawa, J. Mol. Struct. (Theochem) 311, 305 (1994).

[9] H. Reiss, H.L. Frisch, J.L. Lebowitz, J. Chem. Phys. 31, 369 (1959).

[10] R. A. Pierotti, Chem. Rev. 76, 717 (1976).

[11] F.M. Floris and J. Tomasi, J. Comput. Chem. 10, 616 (1989); F.M. Floris, J. Tomasi
and J.L. Pascual-Ahuir, J. Comput. Chem. 12, 784 (1991).

[12] J. Langlet, P. Claverie, J. Caillet and A. Pullman, J. Phys. Chem. 92, 1617 (1988).

[13] C. Amovilli and B. Mennucci, J. Phys. Chem B 101, 1051 (1997)
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[45] I. Tuñón, M. Ruiz-Lopez, D. Rinaldi and J. Bertrán, J. Comput. Chem. 17, 148
(1996).

[46] V. Barone, M. Cossi and J. Tomasi, J. Chem. Phys. 107, 3210 (1997).

[47] J. Tomasi, R. Cammi, B. Mennucci, C. Cappelli and S. Corni, Phys. Chem. Chem.
Phys. 4, 5697 (2002).

[48] M. Cossi, G. Scalmani, N. Rega and V. Barone, J. Chem. Phys. 117, 43 (2002).


